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Abstract: Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated 
neuropathy with demyelination of nerve fibers as leading morphological feature. The course of disease can 
be chronic progressive or remitting relapsing. Whereas for acute immune-mediated neuropathies several 
serological markers have been identified and used successfully in clinical routine, the serological diagnosis 
of chronic variants such as CIDP has not yet been evolved satisfactory. The typical CIDP and its various 
atypical variants are characterized by a certain diversity of clinical phenotype and response to treatment. 
Thus, diagnostic markers could aid in the differential diagnosis of CIDP variants and stratification of 
patients for a better treatment response. Most patients respond well to a causal therapy including steroids, 
intravenous immunoglobulins and plasmapheresis. Apart from electrophysiological and morphological 
markers, several autoantibodies have been reported as candidate markers for CIDP, including antibodies 
against glycolipids or paranodal/nodal molecules. The present review provides a summary of the progress 
in autoantibody testing in CIDP and its possible implication on the stratification of the CIDP variants and 
treatment response. 
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Introduction

There has been remarkable progress in the clinical and 
electrophysiological categorization of acute and chronic 
immune-mediated neuropathies recently. However, the 
serological diagnosis of chronic inflammatory demyelinating 
polyneuropathies (CIDP) is still inconsistent and the 
search for useful serological markers is ongoing (1,2). 
CIDP represents a rare disabling autoimmune disorder 

of peripheral nervous system, with poorly understood 
etiopathogenesis. Various incidences have been reported, 
ranging from 0.8 to 8.9 per 100,000 individuals per 
year depending on geographical origin of the patient 
cohorts investigated (3). Nevertheless, along with acute 
polyneuropathies classified as the Guillain-Barré syndrome 
(GBS) CIDP accounts for the majority of immune mediated 
polyneuropathies (4).  

Once correctly diagnosed, several causal treatment 
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options are available for a large part of the CIDP patients, 
with satisfactory success rates (5,6). As second line therapy 
options, biologicals (e.g., rituximab), immunosuppressant or 
immunomodulatory drugs may be considered when patients 
do not respond adequately to plasmapheresis or intravenous 
immunoglobulin (IVIg) (7). The diagnosis of CIDP is 
mainly based on clinical and electrophysiological criteria (8). 
Typical clinical symptoms of CIDP comprise symmetrical, 
proximal and/or distal paresis as well as sensory loss and 
develop over a period of at least 8 weeks (9). Hereditary 
neuropathies which should be taken into consideration for 
differential diagnosis of CIDP variants will be not covered 
in this review.

Several diagnostic criteria with differing sensitivities have 
been discussed recently (10). Altogether, the diagnostic 
criteria of the European Federation of Neurological 
Sciences (EFNS) established in cooperation with the 
Peripheral Nerve Society (PNS) and refined in 2010 (11) 
have gained widespread acceptance (8). Thus, CIDP can 
be classified into typical CIDP and atypical variants such 
as distal acquired-demyelinating polyneuropathy (DADS), 
multifocal-acquired demyelinating sensory and motor 
polyneuropathy (MADSAM) also referred to as Lewis-
Sumner syndrome, and acute-onset CIDP (A-CIDP) 
(12-14). Due to acute onset and, thus, the similarity of 
the clinical phenotype with acute immune-mediated 
neuropathies such as the GBS, the diagnosis of A-CIDP 
can be delayed (15). In contrast, DADS as an atypical 
variant is often associated with a monoclonal gammopathy 
and, hence, sometimes difficult to differentiate from 
paraproteinemic neuropathies such as chronic sensory ataxic 
neuropathy with IgM autoantibodies (autoAbs) to disialosyl 
gangliosides also referred to as CANOMAD (chronic 
ataxic neuropathy, ophthalmoplegia, IgM paraprotein, cold 
agglutinin and antidisialosyl antibodies) (16,17). 

Altogether, the defined diagnostic criteria of EFNS/
PNS permit a broad range of clinical variants to be grouped 
under the clinical entity CIDP. However, these variants 
might be characterized by different pathogenic mechanisms. 
Novel markers could aid in stratification of patients 
with CIDP, in order to address the diversity of clinical 
phenotype and response to treatment of typical and various 
atypical CIDP variants. Several laboratory abnormalities 
were reported for CIDP patients such as paraproteinemia, 
elevated hemoglobulin A1c and creatinine kinase, as well as 
positive vasculitic neuropathy markers (1). Notwithstanding, 
neither of these laboratory abnormalities were specific for 
CIDP and could be considered as diagnostic criteria as it is 

the case for acute immune-mediated neuropathy) (18).

Pathophysiology of CIDP

The leading pathogenic process in CIDP is the multifocal 
demyelination of nerve cells affecting nerve roots, plexus 
and fibers as well as conditions mimicking this process 
(19-21). The latter refer to an emerging concept based 
on electrophysiological and experimental findings 
demonstrating a conduction failure with typical “axonal” 
damage characteristics which, however, can rapidly recover 
(reversible conduction failure) (20).  

Experimental evidence on passive and active animal 
transfer models ,  act ive immunization with nerve 
components and response to immunosuppressive treatment, 
IVIg as well as plasmapheresis, suggest that dysfunctional 
acquired immune responses may play a pivotal role in 
the pathogenesis of CIDP (2,22-26). In this context, 
the heterogeneous clinical manifestation of CIDP may 
hint at pathophysiological processes involving humoral 
autoimmune responses against differing nerve fiber 
components. As a fact, IgG and IgM as well as complement 
deposits were demonstrated in patients with chronic 
inflammatory neuropathies (27). Moreover, compared 
to normal controls, one study reported increased serum 
levels of anaphylatoxin C5a and terminal complement 
complex (C5b9) in serum and cerebrospinal fluid (CSF) of 
CIDP patients (28). Autoreactive T-cell responses against 
myelin epitopes have also been reported, which lends 
further evidence to a certain role of a tolerance break to 
distinct components of the peripheral nerve system (26,29). 
Furthermore, CD4+ and particularly CD8+ T cells were 
identified in inflammatory infiltrates of patients with CIDP 
(30,31). Last but not least, elevated levels of inflammatory 
cytokines such as interleukin 2, interleukin 6, tumor 
necrosis factor alpha and B-cell activating factor were 
reported in serum and CSF of CIDP patients (32-35).

Altogether, there is mounting evidence that an 
autoimmune attack against distinct components of 
peripheral nerves particularly of the node and paranode 
regions is very likely as leading pathogenic mechanism. 
Likely, this autoimmune attack is triggered by microbial 
molecular mimicry (36). Hence, it is not surprising that 
multiple novel autoAbs identified recently have been 
proposed as potential biomarkers for CIDP (2,37-39). 
Nevertheless, it should be mentioned that no serum marker 
is recognized to be diagnostic currently despite the clear 
correlation of certain autoAbs with distinct peripheral 
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neuropathy variants (40,41). 

Diagnostic options in CIDP

The diagnosis of CIPD relies on observation of neurological 
clinical symptoms of demyelination and detection of 
demyelinating electrophysiological features, as well as 
elevated CSF protein levels (8,42,43). New conduction 
studies may aid in the discrimination of demyelination 
(conduction block or reduced conduction velocity) and 
axonal impairment (diminished compound muscle action 
potential amplitude). The latter is, in general, accompanied 
with poor prognosis, but may rapidly recover. This is seen 
in patients with nodo-paranodopathies, a new concept in the 
diagnosis of autoimmune mediated polyneuropathies (21).

Clinical impairment is recommended to be assessed 
by the Medical Research Council (MRC) (44) and the 
inflammatory neuropathy cause and treatment (INCAT) 
disability score (45). Furthermore, disease activity may be 
ascertained by the Clinical Disease Activity Status (CDAS) 
with the classification in unstable and stable stages (46).

When a diagnosis cannot be established by the former 
features, biopsy of the nerve affected with assessment of 
inflammatory infiltrates may provide additional helpful 
information. However, inflammatory infiltrates may not 
be detectable at all, or only occasionally, which mirrors 
the heterogeneous clinical picture of CIDP (47). Thus, 
characteristic signatures of de- (thin myelin sheath 
around large axons) or re-myelination (onion bulbs) and 
endoneuronal edema should be considered as further biopsy 
characteristics (48). 

Recently, non-invasive imaging techniques such as 
magnet resonance imaging of nerve roots and fibers or 
sonography have been successfully utilized in clinical studies 
as additional diagnostic options to support a diagnosis of 
CIDP (49-51). Furthermore, interesting diagnostic results 
have been achieved by corneal confocal microscopy due to 
the association of CIDP with small fiber damage (52,53).

Nevertheless, the diagnosis of CIDP remains challenging 
and it is occasionally confirmed by the response to a 
causal therapy only (8). Misdiagnosis of CIDP with 
inappropriate therapy was reported in up to 47% of CIDP 
patients investigated (54). Thus, the early diagnosis of 
CIDP and treatment initiation is essential for preventing 
irreversible axonal damage and disability. Hence, the search 
for additional biomarkers in particular serological ones 
continues (2). Serological markers could help supporting an 
early diagnosis. In addition, such biomarkers could assist in 

predicting treatment response and differentiating between 
clinical phenotypes. 

AutoAbs as potential markers in CIDP

AutoAbs to nerve components were reported to play 
a pathogenic role in acute autoimmune peripheral 
neuropathies such as GBS (55-57). As a fact, autoAbs to 
glycoconjugate molecules like gangliosides or the myelin-
associated glycoprotein (MAG) have gained widespread 
use in serological work-up of patients with acute peripheral 
neuropathies (56). In this context, the use of assay technique 
has been a contentious debate regarding the optimal 
epitope presentation for correct autoAb analysis (37,58-61).  
Interestingly, multiplex assay techniques such as line 
immunoassays (LIA), glycoarrays, and flow cytometry 
evolved as novel promising diagnostic tools to address 
clinical needs (58,62-64). In contrast to acute peripheral 
neuropathies, the role of autoAb testing in CIDP is still 
elusive (5). This is astonishing to a certain extend given the 
plethora of data indicating a pathogenic role of autoimmune 
responses in CIDP. Increasing evidence indicates that 
autoAbs to targets involved in saltatory conduction at the 
nodes of Ranvier and adjacent regions may represent marker 
candidates (65). The autoimmune attack of these autoAbs 
can mimic demyelination and present with a reverse 
conduction block, also referred to as axonal conduction 
block based on disruption of nodal axolemma (4). 

AutoAbs to nodal and paranodal targets could be 
ascertained by the use of tissue-based fluorescence assays 
revealing in up to 30% of patients with immune-mediated 
neuropathies including CIDP such autoAbs (66). These 
findings sparked the intensive search for the corresponding 
targets responsible for specific autoAb binding. Hence, 
the diagnostic role of autoAbs to distinct targets related 
to the node of Ranvier and adjacent regions as well as to 
non-regional related components reported in CIDP so far  
(Table 1) and their corresponding detection techniques 
should be in the focus of this review.

AutoAbs to specific nerve fiber regions

AutoAbs to nodal targets

Potential nodal autoantigenic targets investigated in CIDP 
have been neurofascin (NF) 186, moesin, and gliomedin 
(67,68) (Table 1). Gliomedin is a microvilli cell adhesion 
molecule of Schwann cells interacting with NF186 of the 
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Table 1 Autoantigenic targets in chronic inflammatory demyelinating polyneuropathy (CIDP) and relevance of corresponding autoantibodies

Location Autoantigenic target Relevance for CIDP Regional association

Node of Ranvier Neurofascin 186 (NF186) Anecdotal evidence/specific*

Neurofascin 140 (NF140) Specific* (NF140/186), often IgG4

Moesin Non-specific

Gliomedin Non-specific

Paranode Neurofascin 155 (NF155) Specific*, often IgG4

Contactin-1 Specific*, often IgG4

Contactin-associated protein 1 (Caspr1) Anecdotal evidence, neuropathic pain

Juxtaparanode Contactin-2/transient axonal glycoprotein 1 Non-specific

Contactin-associated protein 2 (Caspr2) Non-specific

Myelin Myelin protein zero Non-specific

Peripheral myelin protein 2 Non-specific

Peripheral myelin protein 22 Non-specific

Connexin 1 Non-specific

Axon + myelin Sulfatide Non-specific, predominantly IgM

Ganglioside GM1 Non-specific, predominantly IgM

Glycolipid complexes Non-specific

*, distinct CIDP subsets (“IgG4-mediated nodo/paranodopathies”): patients with autoantibodies (autoAbs) to neurofascin 155 (NF155) 
and contactin-1 present with rapid severe onset and tend to show distal limb involvement, sensory ataxia, tremor, and a poor response 
to intravenous immunoglobulin (IVIg). In contrast, patients with autoAbs to NF140/186 antibodies show a subacute-onset with clinical 
manifestations that include sensory ataxia, conduction block and cranial nerve involvement and may have a better response to IVIg.

axon. In turn, NF 186 is linked along with other molecules 
to the voltage-gated sodium channels enriched in the nodal 
region and responsible for inward current of action and 
saltatory conduction finally (69). Consequently, the lack 
of NF186 interferes with axonal conduction, as elegantly 
demonstrated in NF186 null mice (70). Remarkably, 
autoAbs against the nodal neurofascin NF186 have been 
found in CIDP (66). Recently, autoAbs to NF140/186 
(mainly IgG4) targeting epitopes different from autoAbs 
against NF155 and specific for a subset of CIDP showing 
subacute-onset and include sensory ataxia, conduction 
block and cranial nerve involvement have been found (39). 
Nevertheless, autoAbs to paranodal targets, in particular of 
the IgG4 isotype, seem to be more frequent in CIDP and 
may help in stratifying patients with CIDP variants (4). 

AutoAbs to paranodal targets

Paranodes fence the  internodal region and prevent the 

diffusion of nodal molecules like NF186 and voltage-
gated sodium channels to that region (71). Furthermore, 
the integrity of the paranode is important to prevent 
interruption by juxtaparanodal voltage-gated potassium 
channels (72,73). Paranodal autoAbs against NF155 have 
been found consistently in CIDP patients with combined 
central and peripheral demyelination (CCPD) (74,75) 
and in a subset of CIDP patients with distinct clinical  
features (76) (Table 1). Out of the other molecules 
forming septate-like junctions in the paranodal region 
such as contactin-1 (CNTN1) and contactin-associated 
protein (Caspr), CNTN1 seems to be another relevant 
autoantigenic target in CIDP (65). The presence of 
particularly IgG4 to CNTN1 and NF155 was confirmed by 
several other clinical evaluations recently demonstrating an 
aggressive disease onset and poor responsiveness to IVIgs 
(68,77-80). Furthermore, Querol and coworkers found 
only paranodal autoAbs against NF155 and CNTN1 to 
be specific markers in CIDP (2). Both autoAbs seem to be 
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pathogenic by interfering with NF155/CNTN1 complex 
in a complement-independent manner, which has also 
implications for treatment decisions (68). 

AutoAbs to juxtaparanodal targets

The potential role of autoAbs to juxtaparanodal targets 
such as CNTN2 also referred to as transient axonal 
glycoprotein 1 (TAG1) and Caspr2 interfering with the 
stability of the voltage-gated potassium channel complex 
is an emerging hypothesis (4,81). Loss of tolerance against 
these potential targets has not been conclusively reported so 
far. Interestingly, an association of distinct single nucleotide 
polymorphisms of TAG1 with the responsiveness of CIDP 
patients to IVIg therapy is discussed controversially (82,83). 

AutoAbs to non-regional related components

AutoAbs to myelin proteins

Despite extensive studies on the potential role of myelin 
proteins (i.e., myelin protein zero, peripheral myelin 
protein 2 or 22, and connexin 1) as autoimmune targets in 
CIDP, no significant associations of corresponding autoAbs 
with CIDP could be established (2,29,84-86) (Table 1). 
This was confirmed by a compelling study using indirect 
immunofluorescence on various cellular substrates and 
immunoprecipitation (2). In contrast, autoAbs to MAG 
were reported in patients with DADS (16).

AutoAbs to gangliosides/sulfatide

Unlike acute immune-mediated neuropathies, the value of 
autoAb testing to gangliosides and sulfatide has been still 
illusive in chronic immune-mediated polyneuropathies, 
and only established for a minority of them (Table 1). Thus, 
IgM autoAbs against disialosyl epitopes, particularly to 
GD1b, were found in chronic sensory ataxic neuropathy 
demonstrating often similar clinical features of CIDP (17). 
Furthermore, patients suffering from the CANOMAD 
syndrome demonstrated IgM autoAbs to the disialosyl 
gangliosides GD1b, GD3, GT1b, and GQ1b (17). Most 
patients with IgM autoAbs against GD1b profited from 
IVIg therapy or biologicals (87,88). These IgM autoAbs 
appeared to be pathogenic in terms of sensory ataxia, which 
can also be observed in CIDP. 

Furthermore, autoAbs to sulfatide, which is predominantly 
expressed within the non-compact myelin, were associated 

with different subtypes of peripheral neuropathy, most 
of them axonal (60,89). However, a demyelinating type 
with a lower prevalence was also described (90). In acute 
polyneuropathies, a particular strong association of 
pathogenic autoAbs with distinct clinical variants [such 
as autoAbs against GQ1b to the Miller-Fisher syndrome 
(MFS), a subtype of the GBS], could be ascertained 
(37,91,92). Conversely, in terms of chronic immune-
mediated neuropathies, IgM autoAbs against GM1 were 
reported in up to 60% of patients with multifocal motor 
neuropathy (MMN), a progressively worsening pure 
motor polyneuropathy (93-95). Of note, increased titers 
of IgM autoAbs to sulfatide were detected in patients 
with neuropathy, where they are often associated with 
a concomitant reactivity to the MAG (96). In contrast, 
Giannotta and coworkers reported reactivity to sulfatide 
in only 1% of CIDP patients (97). Furthermore, a recent 
retrospective analysis found IgM autoAbs to GM1 in 46% of 
patients with MMN but in only 3% of CIDP patients (93).

In a recent study, an elevated frequency of at least one 
IgM autoAb to GM1, GD1b and, sulfatide in patients 
suffering from CIDP was reported (98). Remarkably, 
patients positive for autoAbs to sulfatide were younger 
and showed typical manifestations of clinical symptoms 
of CIDP but no association with axonal degeneration and 
neither any association with monoclonal IgM gammopathy 
nor with positivity of autoAbs to MAG reported earlier 
(90,96,97,99). Of note, cerebroside sulfotransferase-
deficient mice demonstrated paranodal disruption by 
juxtaparanodal voltage-gated potassium channel invasion 
which underscores the role of sulfatide in stabilizing 
the paranodal junctions (100). Furthermore, autoAbs to 
sulfatide-ganglioside complexes detected by a combinatorial 
glycoarray methodology accounted for the largest group 
of antiglycolipid autoAbs in patients with GBS (60). Thus, 
the assay technique used for the analysis of such autoAbs 
appears to play a pivotal role. Thin-layer chromatography 
is supposed to be the gold-standard assay technique for 
the assessment of antiglycolipid autoAbs, though it is not 
applicable for routine use (63). Methods such as the LIA 
or the combinatorial glycoarray may be a good alternative 
for the multiplex assessment of autoAbs to gangliosides and 
sulfatide due to an optimal autoantigenic epitope-preserving 
binding on hydrophobic polyvinylidene difluoride 
membranes (64,101). The hydrophobic solid phase has 
already proven its usefulness for the specific analysis of 
auto/Abs to amphipathic molecules like lipopolysaccharides 
and phospholipids exhibiting similar physicochemical 
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characteristics (102-105). In the context of antiphospholipid 
antibody testing, hydrophobic membranes appear to result 
in a better assay performance than for instance solid phases 
used in enzyme-linked immunosorbent assays (106-108). 

Altogether, differences in assay techniques could be the 
reason for differing reports on the frequency of autoAbs to 
gangliosides and sulfatide (97). Thus, higher frequencies of 
IgM autoAbs to GM1 (16%) detected by LIA were found 
in CIDP and MMN patients in contrast to the glycoarray 
(7%), where IgM to glycolipid complexes containing GM1 
and sulfatide were the most frequently observed autoAbs in 
CIDP patients (98,109). Interestingly, the patients of both 

studies demonstrated motor disturbances more frequently 
than autoAb-negative ones did. Moreover, patients with 
positivity of autoAbs to sulfatide showed a higher rate 
of conduction blocks in nerve conduction studies (98). 
These findings add further evidence to the assumption 
that impairment of primarily motor functions in CIDP 
may be explained by depletion of sulfatide and myelin 
proteins such as neurofascin 155 especially in the paranodal  
region (89). Furthermore, the ganglioside GM1 is highly 
expressed on the membranes of motor nerves and on the 
surface of Schwann cells. Binding of autoAbs to these 
targets on the axon at the nodes of Ranvier or on Schwann 
cells (see Figure 1) may cause complement activation 
and disruption of sodium channel clusters resulting in 
conduction abnormalities (57,110).

Clinical relevance of autoAbs against paranodal 
proteins

Since its first description in 1958 (111) results of numerous 
studies, case series and case reports indicate that CIDP 
is not a defined disease entity but rather a spectrum of 
related chronic neuromuscular disorders. The phenotypic 
variability and response to therapy may be driven by different 
pathomechanisms that are associated with autoantigenic 
targets of immune responses (19). Therefore, autoAbs specific 
for defined CIDP subtypes may be helpful in their early 
diagnosis leading to the most effective therapy. Although 
numerous autoAbs have been described in CIDP, only 
IgG4 autoAbs against paranodal proteins (i.e., neurofascin 
155, contactin 1, Caspr1) determined by cell-based assays 
or ELISA using human native autoantigens showed a very 
high specificity for a defined clinical phenotype named 
“autoimmune nodo-paranodopathy” (2,15,112).

AutoAbs against neurofascin 155: summarizing the 12 
studies which tested autoAbs against NF155 by using native 
human NF155, the overall frequency was 6.4% (90/1,404), 
with predominant IgG4 response in CIDP patients (66). 
The frequency differs between the studies from 4% to 18% 
(38,73,75,76,79,113-115). These studies, along with that of 
Siles et al. (116), showed a very high diagnostic specificity 
(>99–100%) by testing of more than 200 blood donors and 
1,109 patients with other neurological diseases including 
GBS, MFS, multiple sclerosis (MS), MMN, paraneoplastic 
neurological syndromes, MAG antibody-positive and 
genetic neuropathies. Only some GBS patients (frequency 
<1%) were found positive with a predominant IgG1 or 
IgM response (38,73,75,76,79,113,115). Although the 

Figure 1 Structure of the node of Ranvier and adjunct regions 
of a myelinated nerve fiber. Schwann cells insulate the axon of a 
nerve cell by tightly binding to the axolemma through septate-
like junctions in the paranode (PN) region and forming the 
myelin sheath around the axon. The myelin loops express the 
neurofascin isoform 155 which interacts with the heterodimers 
of contactin (CNTN)-1 and contactin-associated protein (Caspr) 
on the axolemma, both representing major autoantigenic targets 
in chronic inflammatory demyelinating polyneuropathy (CIDP). 
Sulfatide another autoimmune target in CIDP is essential for the 
stabilization of the PN region. The adjacent juxtaparanodal (JPN) 
region is characterized by voltage-gated potassium channels on the 
axolemma and the presence of Caspr2 and CNTN-2 complexes. 
The internode (IN) region consists of the compact myelin sheath 
around the corresponding axon region. The non-insulated region 
between two adjacent Schwann cells is referred to as the node of 
Ranvier enriched with voltage-gated sodium channels essential for 
saltatory conduction.   

Schwann cells

Myelin sheath

Axon PN       JPN       IN
Node of
Ranvier
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clinical picture may vary slightly among studies, a specific 
clinical phenotype that differs from the  autoAb-negative 
CIDP has been described, which includes a younger age of 
onset, a subacute and more severe onset, disabling tremor, 
sensory and cerebellar ataxia, distal dominant weakness, 
and poor response to IVIg (75,76,79,113). Furthermore, 
an association of NF155 autoAb with CCPD has been 
described in Japanese but not in Caucasian patients (66,73).  

AutoAbs to CNTN1 with predominant IgG4 isotype 
were found in 3–8% of CIDP patients, with a diagnostic 
specificity of 100% vs. blood donors, GBS, and MMN 
(38,66,78). Patients with  autoAbs to CNTN1 show a 
special clinical phenotype, including a more advanced age 
of onset compared to autoAb negative CIDP, an aggressive 
and GBS-like subacute onset of weakness, a very high 
ratio of sensory ataxia, early axonal involvement, and poor 
response to IVIg (66). 

AutoAbs against Caspr1: up to now, autoAbs against 
Caspr1 were described in two studies only, showing a 
cumulative frequency in CIDP patients of about 1% 
(3/281) and a high diagnostic specificity (66). These were 
only detectable in one out of 48 GBS patients, but none 
of 52 MS patients, 32 patients with Charcot-Marie-Tooth 
disease, 34 patients with possible or definite paraneoplastic 
neurological syndromes and 78 blood donors (38,116,117). 
Whilst the GBS patient had IgG3 autoAb, the autoAb to 
Caspr1 of the CIDP patient in the study of Doppler et al. 
was of the IgG4 isotype. This patient had a subacute, severe, 
motor dominant onset, severe pain, reversible conduction 
block, was unresponsive to IVIg and corticosteroids, but 
showed a good response to B cell depletion (117).

Taken together, CIDP positive for autoAbs against 
the paranodal proteins NF155, CNTN1, and Caspr1 
represent a different CIDP subtype (autoimmune nodo-
paranodopathy) compared to seronegative CIDP with poor 
response to IVIG therapy, but partial favorable steroid 
and plasmapheresis responses (66). Therefore, IVIG is 
not a primary therapeutic option, especially in patients 
with autoAbs to NF155. First studies demonstrated that 
most seropositive CIDP patients had a good response to 
rituximab, a B cell depleting therapy (66,115,117,118). In 
conclusion, autoAbs against paranodal proteins should be 
determined for an early diagnosis of autoimmune nodo-
paranodopathies indicating the treatment with rituximab. 

Summary

The diagnosis of CIDP and its variants is based on clinical 

and electrophysiological features. Emerging autoAbs, 
especially against paranodal cell-adhesion molecules 
such as NF155, CNTN1, and Caspr1 as well as to 
glycolipids (gangliosides and sulfatide) appear to be good 
marker candidates for CIDP subentities, i.e., may aid in 
discriminating the diverse clinical variants and/or the 
response to treatment. AutoAbs to NF155 and Caspr1 of 
the immunoglobulin subtype IgG4 appear to be associated 
with a poor response to IVIg therapy, but good response to 
B cell depletion. On the other site,  autoAbs to NF140/186 
may be associated with a better response to IVIg.
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