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Background: Ultrasound (US) is the most commonly used radiologic modality to identify and characterize 
thyroid nodules. Many nodules subsequently undergo fine needle aspiration to further characterize the 
nodule and determine appropriate treatment. The fine needle aspirate is most commonly classified using the 
Bethesda System for Reporting Thyroid Cytology (TBSRTC). It can sometimes be difficult to differentiate 
Bethesda class III lesions (atypia of undetermined significance/follicular lesion of undetermined significance) 
from Bethesda class IV, V and VI (malignant nodules). However, differentiation is important as clinical 
management differs between the two groups. The purpose of this study was to introduce machine learning 
methods to help radiologists differentiate Bethesda class III from Bethesda class VI, V and VI lesions.
Methods: The authors collected 467 thyroid nodules with cytopathology results. US features were 
summarized using the 2017 ACR (American College of Radiology) Thyroid Imaging Reporting And Data 
System (TIRADS). Machine learning models [logistic regression, gradient boost, support vector machine 
(SVM), random forest and deep neural networks (DNN)] were created to classify Bethesda class III vs class 
IV/V/VI.
Results: DNN outperformed other machine learning classifiers and obtained the highest accuracy and 
specificity to classify thyroid nodules as either Bethesda III or IV/V/VI nodules using multiple US features.
Conclusions: Machine learning/deep learning approaches could help differentiate Bethesda III nodules 
from IV/V/VI using US features which may benefit treatment decisions.
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Introduction

Thyroid nodules are common. Studies (1) have shown an 

incidence of 19–35% on ultrasound (US) and up to 65% 

incidence at autopsy. US can provide high-resolution 

images of thyroid gland.
ACR (American College of Radiology) Thyroid Imaging 

Reporting And Data System (TIRADS) is a widely used risk 
stratification system evaluating the benignity/malignancy of 
thyroid nodules (2). ACR TIRADS quantifies five categories 
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of US features and assigns different scores to each category. 
The five categories are composition (cystic or almost 
completely cystic, spongiform, mixed cystic and solid, 
solid or almost completely solid), echogenicity (anechoic, 
hyperechoic or isoechoic, hypoechoic, very hypoechoic), 
shape (wider-than-tall, taller-than-wide), margin (smooth, 
ill-defined, lobulated or irregular, extra-thyroidal extension), 
and echogenic foci (none or large comet-tail artifacts, 
macrocalcifications, peripheral calcifications, punctate 
echogenic foci). 

The fine needle aspirate is most commonly classified 
using the Bethesda System for Reporting Thyroid Cytology 
(TBSRTC) (3). Studies have shown that TBSRTC 
provide adequate communication between pathologists 
and radiologists with high accuracy (98%) and low false 
positive rate (3%) (4). However, studies show that TIRADS 
classification has only 70% concordance with the Bethesda 
grade (5). This is clinically relevant because different 
Bethesda grades have different treatments. Malignant 
nodules (Bethesda class V/V/VI) are surgically resected 
while benign nodules (Bethesda class II) are followed. 
Bethesda class III nodules may require an additional biopsy 
to provide material for genetic analysis to determine 
appropriate treatment. More accurate characterization of 
the nodules by US prior to the biopsy may thus be helpful 
in clinical management.

In this paper, we defined our problem as a binary 
classification problem. Our goal was to differentiate 
Bethesda class III from Bethesda grade IV/V/VI nodules 
using machine learning and deep learning approaches. We 
applied logistic regression, random forest, support vector 
machine (SVM), gradient boosting, k-nearest neighbors 
(KNN) and deep neural networks (DNN) for this binary 
classification. 

Methods

A retrospective study of 467 thyroid FNAs conducted by the 
Department of Pathology at the Sichuan Cancer Hospital & 
Institute from March 2017 to March 2018 was undertaken. 
US images and corresponding features, demographic 
information, and cytopathology results were collected and 
described. The nodules were described by an experienced 
radiologist using the TIRADS lexicon. US images were 
collected using Phillips, GE, Siemens and Supersonic US 
machines. 

All FNAs were performed using US guidance to directly 
visualize the needle tip within the nodule of interest. 

FNAB was performed primarily with 27-gauge needles and 
capillary action without a syringe or aspirator. The needle 
was attached to an air-filled syringe to express the specimen 
on a glass slide. A second glass slide was used to smear 
the specimen into a thin layer, creating two direct smears 
from each pass. One smear was immediately submerged in 
alcohol for Papanicolaou stain. The FNAs were evaluated 
by two pathologists with more than 5 years of cytopathology 
experience. 

Six supervised classification methods (logistic regression, 
random forest, decision tree, gradient boosting, SVM, 
KNN, DNN) were tested on the cohort. The Bethesda 
class III cases were labeled as class “0”, while the malignant 
Bethesda class VI/V/VI, were labeled as class “1”. We 
randomly chose 75% of the data as the training set, 10% 
as the validation set, and 15% as the test set. The six 
classifiers were built for this binary classification task. Cross 
validations with number of five folds were conducted when 
testing the model. 

Results

A total of 467 cytopathological cases were collected in the 
Department of Pathology. The cohort was comprised of 
370 female patients (female to male ratio 3.8:1), age varied 
from 9 to 83 years (45.31±13.28 years) and nodule length 
varied from 0.2 to 3.5 cm (0.83±0.49 cm). Table 1 shows the 
number of cases for each ACR TIRADS feature. Table 2  
demonstrates the number of cases in each TBSRTC 
category. 

DNN achieved the highest accuracy of 87.15%. Other 
classifiers achieved from 82.23% (SVM) to 86.94% (logistic 
regression) accuracy. The detailed comparisons of the 
models’ performance are shown in Table 3. 

Figure 1 indicates the receiver operating curve (ROC) of 
the six classifiers. Area under curve (AUC) is an indicator 
to show the performance of each method. All approaches 
showed similar results in AUC. Logistic regression slightly 
outperformed other classifiers (AUC =0.904), compared 
to gradient boosting (AUC =0.887), random forest (AUC 
=0.901), SVM (AUC =0.894), KNN (AUC =0.850) and 
DNN (AUC =0.891). 

Discussion

Machine learning and deep learning methods have 
previously been used to classify thyroid nodules using US 
images and/or radiologists’ description of the nodules.  
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Table 1 Characteristics of the cohort

Characteristics
Bethesda class III 

(n=128)
Bethesda class IV 

(n=43)
Bethesda class V 

(n=101)
Bethesda class VI 

(n=195)

Age, years 49.32±11.55 46.81±11.91 43.57±13.44 43.24±14.00

Gender

Male 21 8 20 48

Female 107 35 81 147

ACR TIRADS

Compositions

Cystic or almost completely cystic 3 2 0 1

Spongiform 36 16 2 3

Mixed cystic and solid 15 2 2 1

Solid or almost completely solid 74 23 97 190

Echogenicity

Anechoic 3 2 0 1

Hyperechoic or isoechoic 22 6 3 3

Hypoechoic 86 28 47 83

Very hypoechoic 17 7 51 108

Shape

Wider-than-tall 122 38 56 121

Taller-than-wide 6 5 45 74

Margin

Smooth 79 24 9 8

Ill-defined 37 15 3 2

Lobulated or irregular 11 4 66 141

Extra-thyroidal extension 1 0 23 44

Echogenic foci

None or large comet-tail artifacts

Yes 30 11 0 2

No 98 32 101 193

Macrocalcifications

Yes 2 1 46 90

No 126 42 55 105

Peripheral calcifications

Yes 15 5 1 6

No 113 38 100 189

Punctate echogenic foci

Yes 4 1 25 71

No 124 42 76 124

Nodule length/cm 0.79±0.46 0.85±0.63 0.75±0.40 0.89±0.51

ACR, American College of Radiology; TIRADS, Thyroid Imaging Reporting And Data System. 
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Table 3 Comparisons of validation accuracy

Machine learning 
methods

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Logistic regression 86.94 89.38 80.47

Gradient boosting 84.15 89.09 71.09

Random forest 85.44 89.09 75.78

SVM 82.23 87.91 76.56

KNN 83.51 87.91 71.88

DNN 87.15 87.91 85.15

SVM, support vector machine; KNN, k-nearest neighbors; DNN, 
deep neural networks.

Table 2 Number of cases in each TBSRTC category

Bethesda class Number of cases (%)

III 128 (27.41)

IV 43 (16.10)

V 101 (21.63)

VI 195 (41.76)

TBSRTC, the Bethesda System for Reporting Thyroid Cytology. 

Wu et al. (6) built machine learning algorithms to 
differentiate suspicious thyroid nodules via sonography. Mei 
et al. (7) applied convolutional autoencoders associated with 
TIRADS descriptions to predict the benignity of thyroid 
nodules. Chang et al. (8) applied SVM to classify benign and 
malignant thyroid nodules based on US images. Gopinath 
et al. (9) integrated statistical texture features and FNA 
cytology microscopic images to an SVM classifier to classify 
benign and malignant thyroid nodules. These studies show 
machine learning approaches can achieve similar or higher 
accuracy than radiologists in differentiating benign and 
malignant nodules based on US images. 

Most of the prior studies have focused on classifying 
benign and malignant nodules and achieved different 
accuracies based on different sizes of the datasets. Our 
study, however, applied machine learning tools to further 
classify suspicious nodules that might require different 
treatments. 

Conclusions

As can be seen in Table 3 and Figure 1, our machine learning 
approaches are helpful in differentiating Bethesda class 

III from classes IV/V/VI. DNN, random forest, logistic 
regression and SVM are useful models both with respect to 
accuracy and AUC values. This could help radiologists and 
pathologists to better manage thyroid nodules and provide 
more effective and efficient treatment for Bethesda class III 
nodules. 

Limitations of this study include nodule feature 
description by only one radiologist, possibly introducing 
bias. Further studies should include descriptions from 
multiple radiologists. In addition, the study used a relatively 
small number of nodules from a single hospital. Future 
studies could include additional data from additional sites.
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