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Abstract: Multivariable regression models are widely used in medical literature for the purpose of 
diagnosis or prediction. Conventionally, the adequacy of these models is assessed using metrics of diagnostic 
performances such as sensitivity and specificity, which fail to account for clinical utility of a specific model. 
Decision curve analysis (DCA) is a widely used method to measure this utility. In this framework, a clinical 
judgment of the relative value of benefits (treating a true positive case) and harms (treating a false positive 
case) associated with prediction models is made. As such, the preferences of patients or policy-makers are 
accounted for by using a metric called threshold probability. A decision analytic measure called net benefit is 
then calculated for each possible threshold probability, which puts benefits and harms on the same scale. The 
article is a technical note on how to perform DCA in R environment. The decision curve is depicted with 
the ggplot2 system. Correction for overfitting is done via either bootstrap or cross-validation. Confidence 
interval and P values for the comparison of two models are calculated using bootstrap method. Furthermore, 
we describe a method for computing area under net benefit for the comparison of two models. The average 
deviation about the probability threshold (ADAPT), which is a more recently developed index to measure 
the utility of a prediction model, is also introduced in this article.

Keywords: Decision curve analysis (DCA); diagnostic test; prediction model; outcome

Submitted Jun 02, 2018. Accepted for publication Jul 03, 2018.

doi: 10.21037/atm.2018.07.02

View this article at: http://dx.doi.org/10.21037/atm.2018.07.02

Introduction

Decision curve analysis (DCA) has been increasingly being 
used for the assessment of diagnostic tests and/or prediction 
models in clinical researches. The advantage of DCA is 
that it integrates the preferences of the patients or policy 
makers into analysis. Traditional metrics of diagnostic 
performance such as sensitivity, specificity and area under 
receiver operating characteristic curve (AU-ROC) only 
measure the diagnostic accuracy of one prediction model 
against another, but fail to account for the clinical utility of 
a specific model (1).

DCA was developed to overcome this problem. A key 
concept of DCA is the threshold probability, which was 
defined in the seminal paper by Vickers AJ that “threshold 
probability, pt, is where the expected benefit of treatment is 
equal to the expected benefit of avoiding treatment.” (2). In 
definition, it is obvious that the threshold probability can 
vary from patient to patient. For example, surgery-averse 
patients may opt to take surgery at a high risk of cancer, 
but cancer-averse patients are more likely to perform 
operation at lower risk of cancer. Thus, the DCA allows 
threshold probability to vary to examine whether one 
model is superior to another at a certain range of threshold 
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probability (3), with respect to “the net benefit”. In this 
technical note, we provide code to implement DCA in an R 
environment, including plotting the net benefit, correction 
for overfitting, confidence intervals and a statistical test to 
compare two models over a range of threshold probabilities. 
Before providing our routines, we start by briefly recalling 
the concept of net benefit.

Concept of net benefit

Suppose that we have developed two models to predict/
diagnose a disease, such as sepsis; then every patient can 
have a predicted probability of sepsis (pi) based on one of 
the models. The rationale is that patients with pi > pt are 
judged as positive and will be treated and those with pi < pt  

are judged negative and will not be treated.
To compare two models at a given threshold probability, 

the key concept of DCA is to calculate the net benefit (for 
the treated) with the following equation (2):
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where TP and FP are true positive count and false positive 
count, respectively; n is the number of subjects; and pt is 
the threshold probability. A model is said to be superior 
to another at the chosen threshold probability pt if its net 
benefit surpasses the net benefit of the other model for that 
value of pt. The two models can also be compared to the two 
extreme strategies of treating all the patients [where TP/n 
= π and FP/n =1–π in the equation above, π = (TP + FN)/n 
being the prevalence of the disease, i.e., the event rate] and 
of treating none of the patients (where TP = 0 and FP = 0 
the net benefit being thus 0 at any threshold probability).

That computation of the net benefit is based on treated 
patients. One could similarly calculate a net benefit based 
on untreated patients. The net benefit for the untreated 
patients can be expressed as a function of pt as follows (4):
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where TN and FN are true negative count and false 
negative count. One will get here TN = 0 and FP = 0 (and a 
net benefit of 0 at any threshold probability) for the strategy 
of treating all the patients, and TN/n = 1–π and FN/n = π for 
the strategy of treating none of the patients.

Interestingly, one can check that we have the following 
relationship between the concept of the net benefit for 
treated and untreated patients as follows:
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where net benefit treated (all) = π – (1–π )pt/ (1-pt) refers to 
the net benefit for the treated calculated for the extreme 
strategy of treating all the patients, as mentioned above. 
When multiplied by 100, Vickers and Elkin (2) interpreted 
this quantity (which thus turns out to be what has then been 
called the net benefit for the untreated) as the number of 
avoidable treatments (identified thanks to the model) in 
100 patients who would be otherwise treated, which is “net 
of false negative”. Similarly, the net benefit for the treated 
could be interpreted as the number of profitable treatments 
(identified thanks to the model) in 100 patients who would 
be otherwise left untreated, which is “net of false positive”.

Finally, one could focus on both the treated and the 
untreated patients and calculate the “overall net benefit” 
by summing up the net benefit for the treated and the 
untreated (4):

net benefit overall = net benefit treated + net benefit untreated

Note that while the difference of the net benefit achieved 
by two models will differ whether focusing on the treated, 
the untreated or overall, the ranking of models w.r.t. to the 
net benefit will remain the same for each of these three 
definitions.

More recently, Lee and Wu proposed the average 
deviation about the probability threshold (ADAPT) index 
for determining the utility of a prediction model, which can 
be calculated as follows (5):
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Interestingly, at least when the model is correctly 
calibrated (i.e., when the predicted probabilities pi really 
correspond to the probabilities of having the disease), one 
can show that (5):

ADAPT = (1–pt) * net benefit treated + pt * net benefit untreated 

Working example

An artificial data set is simulated for the illustration purpose. 
There is no clinical relevance of the simulated dataset.

> set.seed(123)

> n<-500
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> rr <- round(abs(rnorm(n,30,10)))

> hr <- round(abs(rnorm(n,90,20)))

> crp <- round(abs(rnorm(n,150,80)))

> library(dummies)

> beta0=-7; betarr=0.05

> betahr=0.02; betacrp=0.02

> linpred <- cbind(1, rr,hr,crp) %*%

c(beta0,betarr,betahr,betacrp)

> pi <- exp(linpred) / (1 + exp(linpred))

> sepsis.tag <- rbinom(n=n, size=1, prob=pi)

> dt <- data.frame(rr,hr,crp,sepsis.tag)

The above code generated a data frame containing 4 
variables: respiratory rate (rr), heart rate (hr), C-reactive 
protein (crp) and observed disease status (sepsis.tag). The 
first three variables will be the predictors and the last one 
(sepsis) will be the response (outcome) to be predicted. 
For simplicity, note that no correlation has been generated 
among the three predictors. The probability pi to have 
sepsis has thus been generated as:

exp ( 0+
1 exp ( 0 )i

beta betarr rr betahr hr betacrp crpp
beta betarr rr betahr hr betacrp crp

∗ + ∗ + ∗
=

+ + ∗ + ∗ + ∗

Such a model with three predictors will be referred to as 
the “full model” in what follows, which shall be compared 
with a “simple model” including only the former two 
predictors.

Net benefit function

R code to perform DCA has been well described in 
the website:  https://www.mskcc.org/departments/
epidemiology-biostatistics/health-outcomes/decision-
curve-analysis-01. However, the dca() function provided in 
the website generated prediction models for one predictors 
at a time and it requires each predictor to be transformed 
to the probability scale (ranging from 0 to 1). In some 
situations, investigators may want to create a model with 
a number of predictors. Here, we create a new function 
to calculate net benefits at varying values of threshold 
probability. This function also allows to calculate the 
different kinds of net benefits mentioned above (treated, 
untreated, overall or the ADAPT index).

> ntbft<-function(data,outcome,frm=NULL,

exterdt=NULL,pred=NULL,xstart=0.01,

xstop=0.99,step=0.01,type="treated"){

pt<-seq(from=xstart,to=xstop,by=step)

lpt<-length(pt)

if(type=="treated") coef<-cbind(rep(1,lpt),rep(0,lpt))

if(type=="untreated") coef<-cbind(rep(0,lpt),rep(1,lpt))

if(type=="overall") coef<-cbind(rep(1,lpt),rep(1,lpt))

if(type=="adapt") coef<-cbind(1-pt,pt)

response<-as.vector(t(data[outcome]))

if(is.data.frame(exterdt)) response<-as.vector(t(exterdt[outcome]))

event.rate<-mean(response)

nball<-event.rate-(1-event.rate)*pt/(1-pt)

nbnone<-1-event.rate-event.rate*(1-pt)/pt

if(is.null(pred)){

model<-glm(frm,data=data,family=binomial("logit"))

pred<-model$fitted.values

if(is.data.frame(exterdt))

pred<-predict(model,newdata=exterdt,type="response")

}

# pred and response should be of the same length

N<-length(pred)

nbt<-rep(NA,lpt)

nbu<-rep(NA,lpt)

for(t in 1:lpt){

tp<-sum(pred>=pt[t] & response==1)

fp<-sum(pred>=pt[t] & response==0)

fn<-sum(pred<pt[t] & response==1)

tn<-sum(pred<pt[t] & response==0)

nbt[t]<-tp/N-fp/N*(pt[t]/(1-pt[t]))

nbu[t]<-tn/N-fn/N*((1-pt[t])/pt[t])

}

nb<-data.frame(pt)

names(nb)<-"threshold"

nb["all"]<-coef[,1]*nball

nb["none"]<-coef[,2]*nbnone

nb["pred"]<-coef[,1]*nbt+coef[,2]*nbu

return(nb)

}

There are nine arguments in the ntbft() function:
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	 data: a data frame on which the prediction model is 
trained.

	 outcome: a character string indicting the name of the 
outcome or disease status.

	 frm: a formula in the form of outcome~predictor 
1 + predictor 2, where each variable should be 
the contained in the data frame. The argument 
specifies the prediction model to be fitted in case the 
argument pred below is NULL (if the pred argument 
is provided, frm is not used).

	 exterdt :  a data frame to specify whether the 
prediction should be made in external dataset; this is 
useful for cross validation of the model. By default, 
the value is NULL, indicating the prediction is made 
in the same dataset as the training dataset.

	 pred: a vector of predicted values to be used to 
calculate the net benefit. By default, the value 
is NULL, indicating that such predicted values 
should be calculated by the routine using the model 
specified by frm.

	 xstart: the starting point of the threshold probability, 
the default value is 0.01.

	 xstop: the end point of the threshold probability, the 
default value is 0.99.

	 step: a numerical value specifying the incremental step 
of the threshold probability, the default value is 0.01.

	 type: controls the type of net benefit to be computed. 
The allowed values correspond to the treated 
(“treated”), untreated (“untreated”) and overall 
(“overall”) patients, or to the ADAPT index 
(“adapt”). The default is the “treated”.

The returning object of the ntbft() function is a data 
frame containing 4 columns: threshold, all, none and pred. 
The “threshold” column is a column containing threshold 
probability at which net benefit will be calculated. “all” 
column is the net benefit for treating all patients, and 
“none” column is the net benefit for treating none patients. 
The “pred” column contains net benefit values for treating 
patients by using the prediction model.

Plotting the net benefit of a simple and a full 
model

Sepsis can be predicted by simply using vital signs such as 
heart rate (hr) and respiratory rate (rr), which is cheap and 
easy to perform (simple model). Laboratory test such as crp 
is costly but can help to increase the predictive accuracy 
(full model). The net benefit for these two models can be 

calculated as follows (the starting point, the end point and 
the incremental step of the threshold probabilities, as well 
as the type of net benefit to be considered can be changed 
by the user if one wishes):

> outcome <- "sepsis.tag"

> model1 <- sepsis.tag~rr+hr

> model2 <- sepsis.tag~rr+hr+crp

> xstart <- 0.01; xstop <- 0.99; step <- 0.01

> type <- "treated"

> nb.simple<-ntbft(data=dt, outcome=outcome,

frm = model1, xstart=xstart, xstop=xstop,

step=step, type=type)

> nb.full <- ntbft(data=dt, outcome=outcome,

frm = model2, xstart=xstart,

xstop=xstop, step=step, type=type)

The results can be visualized by using ggplot2 system (6). 
A dedicated routine to plot the net benefit of different 
models is provided below, where it is convenient to reshape 
the data frame, aggregating all net benefit values in one  
column (7). Such a long format dataset can be easily mapped 
to the coordinate system with groups.

>plot.ntbft<-function(nb,nolines=2:dim(nb)[2],

nobands=NULL,ymin=-0.1,

ymax=max(nb[,c(nolines,nobands)],na.rm=T),

legpos=c(0.9,0.8)){

ylow<-nb[,1]

yup<-nb[,1]

if(!is.null(nobands)){

ylow<-nb[,min(nobands)]

yup<-nb[,max(nobands)]

}

nb.melt<-melt(nb[,c(1,nolines)],

id.vars="threshold",

value.name="Netbenefit",variable.name="Models")

print(ggplot(nb.melt)+

theme(legend.position=legpos)+

geom_line(aes(x=threshold,y=Netbenefit,

colour=Models,linetype=Models))+

geom_ribbon(data=nb,aes(x=threshold,

ymin=ylow,ymax=yup),

linetype=2,alpha=0.2)+

scale_y_continuous(limits=c(ymin,ymax))+
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xlab("Threshold probability")+ylab("Net benefit"))

}

There are six arguments in the plot.ntbft() function:
	 nb: a data frame of net benefit, where the first 

column contains the threshold probabilities and the 
next columns contains the net benefit achieved for 
different models.

	 nolines: the number of the columns of nb which 
should be plotted using lines. The default is to plot 
all columns (except the first one containing the 
threshold).

	 nobands: the number of the columns of nb which 
should be plotted using bands (useful to plot 
confidence intervals). The default is to plot no bands.

	 ymin: the minimum of net benefit to be plotted. The 
default is −0.1.

	 ymax: the maximum of net benefit to be plotted. The 
default is the maximum of the net benefits which are 
plotted either via lines or via bands.

	 legpos: a vector of two coordinates indicating where 
the legend should be in the graph.

One can then plot the net benefit of the two above 
models on the same graph as follows:

> library(ggplot2)

> library(reshape2)

> nb <- cbind(nb.simple, pred.full=nb.full$pred)

> names(nb)[names(nb)=="pred"] <- "pred.simple"

> plot.ntbft(nb)

The output of the above example is shown in Figure 1. 
The net benefit is plotted against the threshold probability. 
The “all” line shows the net benefit by treating all patients, 
and the “none” line is the net benefit for treating none 
patients. It appears that the full model is always superior 
to the simple model across a wide range of threshold 
probabilities, with the highest difference at a threshold 
probability around 0.5. At that threshold, the net benefit 
(for the treated) is 0.030 for the simple model, and 0.162 
for the full model. At that threshold, according to the 
interpretation given above, this means that one can 
administrate about 16−3=13 more profitable treatments (out 
of 100 patients) when using the full model rather than the 
simple model to predict sepsis (net of false positive).

Bootstrap method to correct overfitting

In the above example, the model training and prediction were 
performed in the same dataset, which can cause the problem 
of overfitting. The overfitting can be corrected by using 
bootstrap resampling method with the following steps (8):

(I)	 Sample with replacement from the original dataset;
(II)	 Fit a model with the sample generated in step 1;
(III)	 Use the fitted model in step 2 to predict probability 

of the event of interest in the bootstrap sample, 
and then calculate net benefit at various threshold 
probabilities;

(IV)	 Use the fitted model in step 2 to predict probability 
of the event of interest in the original dataset, 
and then calculate net benefit at various threshold 
probabilities;

(V)	 Compute the difference in net benefit obtained by 
step 3 and 4;

(VI)	 Step 1 to 5 is repeated for a number of times [500], 
and mean difference in net benefit across the 500 
times can be computed.

(VII)	The uncorrected net benefit minus the mean 
difference obtained in step 6 gives the corrected net 
benefit.

Before conducting bootstrap replicates, we first need to 
define a function to calculate the difference of net benefit (or 
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Figure 1 Decision curve analysis for the simple and full model for 
diagnosing sepsis. The two curves are compared to the curves of 
treating none and all patients.
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over-optimism) of the net benefit obtained when evaluated 
on the same or a different data set as that used to train the 
model.

> diffnet<-function(data,ii,outcome,frm,

xstart=0.01,xstop=0.99,

step=0.01,type="treated"){

dd<-data[ii,]

nb<-ntbft(data=dd,outcome=outcome,frm=frm,

xstart=xstart,xstop=xstop,

step=step,type=type)

nb0<-ntbft(data=dd,outcome=outcome,frm=frm,

exterdt=data,xstart=xstart,

xstop=xstop,step=step,type=type)

diff<-nb$pred-nb0$pred

cat(".")

return(diff)

}

Five out of the 6 arguments of the diffnet() are the same 
as that in the ntbft() function. The argument ii to allow 
boot() function to select a sample, frm to specify the model 
formula and outcome to specify the response variable. The 
function returns a data frame containing the difference of 

net benefit as described in step 5 of the algorithm above. 
One can then apply the following code to correct overfitting 
for our simple model and to plot the result obtained:

> library(boot)

> set.seed(124)

> R<-500

> rstls<-boot(data=dt,statistic=diffnet,

R=R,outcome=outcome,frm=model1,

xstart=xstart,xstop=xstop,

step=step,type=type)

> nb.simple<-cbind(nb.simple,

pred.bootc=nb.simple$pred-rowMeans(t(rstls$t)))

> plot.ntbft(nb.simple,nolines=2:5)

The boot() function is employed to perform the 
bootstrap procedure. In the example, the statistic argument 
specifies a function that returns a vector containing the 
statistic(s) of interest; a total of R=500 bootstrap replicates 
have been performed (but the user could easily change this 
parameter). Then, the corrected net benefit is computed 
by subtracting the mean difference from the net benefit 
estimated with the simple model. The obtained result 
is plotted in Figure 2. It shows that the corrected net 
benefit is very close to the uncorrected one, suggesting the 
overfitting is not a serious problem in our example. This 
is not surprising because the covariates are independent to 
each other and there is no noise factor (no overfitting). If 
correlated or noise covariates are included in the model, it 
may not be the case.

Cross validation to correct overfitting

An alternative to bootstrap to assess overfitting is cross-
validation, or out-of-sample validation, which is widely 
used for model validation. One round of cross-validation 
involves splitting the original dataset into complementary 
subsets, performing the analysis on one subset (called the 
training set), and validating the analysis on the other subset 
(called the validation set or testing set). It is common to 
perform multiple rounds of cross-validation using different 
partitions, and the validation results are averaged over 
the rounds to give an estimate of the model’s predictive 
performance. In our situation, the cross-validation is 
performed in following steps (8):

(I)	 The original sample is randomly split into k (e.g., 

pred.bootc
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Figure 2 Decision curve analysis with bootstrap corrected for the 
simple model.
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k=10) equal sized subsets;
(II)	 Fit the model with k-1 subsets by leaving out the 

first subset;
(III)	 Predicted probability is obtained by applying the 

fitted model to the first subset;
(IV)	 Repeat steps 2 and 3 by leaving out and then apply 

the fitted model to the ith group for i = 2,3,..., 
k–1, k. After these procedures, every patient has a 
predicted probability for the outcome of interest.

(V)	 The predicted probability is then used to calculate 
net benefit as described above.

(VI)	 Bootstrap the above steps for a number of times 
(e.g., 200) and the corrected net benefit is the mean 
of these bootstrap results.

Here would be a function to perform cross-validation:

> ntbft.cv<-function(data,outcome,frm,

n_folds=10,R=200,xstart=0.01,

xstop=0.99,step=0.01,type="treated"){

cv<-NULL

for(i in 1:R){

n_train<-nrow(data)

folds_i<-sample(rep(1:n_folds,length.out=n_train))

pred<-rep(NA,n_train)

for(k in 1:n_folds){

test_i<-which(folds_i==k)

train_dt<-data[-test_i,]

test_dt<-data[test_i,]

model<-glm(frm,data=train_dt,family=binomial("logit"))

pred[test_i]<-predict(model,newdata=test_dt,type="response")

}

cv<-cbind(cv,ntbft(data=data,outcome=outcome,

pred=pred,xstart=xstart,xstop=xstop,

step=step,type=type)$pred)

}

return(rowMeans(cv))

}

Seven out of the 9 arguments of the diffnet() are as in the 
ntbft() function. The argument n_folds specifies the number 
of k folds to split the original dataset (default is 10) and the 
argument R specifies the number of bootstrap replicates 
(default is 200), as described in the algorithm above. The 
function returns the cross-validates net benefit. One can 
then apply the following code to cross-validate our simple 
model and to plot the result obtained:

> set.seed(125)

> n_folds<-10

> R<-200

> cv<-ntbft.cv(data=dt,outcome=outcome,

frm=model1,n_folds=n_folds,R=R,

xstart=xstart,xstop=xstop,step=step,type=type)

> nb.simple<-cbind(nb.simple,pred.cv=cv)

> plot.ntbft(nb.simple,nolines=c(2:4,6))

The obtained result (using 10 folds cross-validation and 
200 replicates) is plotted in Figure 3, which again shows that 
overfitting is not a serious problem in our example.

Confidence interval for the decision curve

Confidence interval of a statistic can be estimated using 
bootstrap method. Firstly, we define a function for 
computing the net benefit (with exactly the same arguments 
as the function diff.net above):

> boot.confint<-function(data,ii,outcome,frm,

xstart=0.01,xstop=0.99,step=0.01,
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Figure 3 Decision curve with cross-validated net benefit for the 
simple model.
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type="treated"){

dd<-data[ii,]

nb<-ntbft(data=dd,outcome=outcome,frm=frm,

xstart=xstart,xstop=xstop,

step=step,type=type)

cat(".")

return(nb$pred)

}

Calculation of 95% confidence interval for the net 
benefit of our simple model based on R=500 bootstrap 
replications, together with a plot of the results can then be 
obtained as follows:

> set.seed(126)

> R<-500

> boot.cfint<-boot(data=dt,statistic=boot.confint,

R=R,outcome=outcome,frm=model1,

xstart=xstart,xstop=xstop,step=step,type=type)

> nbci<-NULL

> for(i in 1:length(boot.cfint$t0))

> nbci<-rbind(nbci,boot.ci(boot.cfint,

type="perc",index=i)$percent)

> nb.simple<-cbind(nb.simple,low=nbci[,4],up=nbci[,5])

> plot.ntbft(nb.simple,nolines=2:4,nobands=7:8)

The output Figure 4 shows the confidence interval for 
the decision curve of our simple model.

Comparing two decision curves and reporting P 
value

A test to compare two decision curves (obtained using two 
different models) can also be performed via bootstrap. 
Firstly, we define a function for comparing to such models.

> nbdiff<-function(data,ii,outcome,frm1,

frm2,xstart=0.01,xstop=0.99,

step=0.01,type="treated"){

dd<-data[ii,]

nb1<-ntbft(data=dd,outcome=outcome,frm=frm1,

xstart=xstart,xstop=xstop,

step=step,type=type)

nb2<-ntbft(data=dd,outcome=outcome,frm=frm2,

xstart=xstart,xstop=xstop,

step=step,type=type)

nb.diff<-nb2$pred-nb1$pred

cat(".")

return(nb.diff)

}

The nbdiff() function computes the difference of net 
benefit for two models. The competing models are defined 
by frm1 and frm2. One can then compare our simple and 
full models as follows (using 500 bootstrap replications):

> set.seed(127)

> R<-500

> boot.diff<-boot(data=dt,statistic=nbdiff,

R=R,outcome=outcome,frm1=model1,

frm2=model2,xstart=xstart,

xstop=xstop,step=step,type=type)

> pvalue<-NULL

> for(i in 1:length(boot.diff$t0))

> pvalue<-c(pvalue,mean(abs(boot.diff$t[,i]-

boot.diff$t0[i])>abs(boot.diff$t0[i])))

> cat("\n","number of significant differences over threshold 

probabilities",
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Figure 4 Decision curve with 95% confidence interval for the 
simple model.
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xstart,"-",xstop,"=",sum(pvalue<=0.05),"\n")

number of significant differences over threshold probabilities 

0.01 - 0.99 = 64

> cat("\n","number of non-significant differences over threshold 

probabilities",

xstart,"-",xstop,"=",sum(pvalue>0.05),"\n")

number of non-significant differences over threshold 

probabilities 0.01 - 0.99 = 35

It turns out that the two models significantly differ 
at the 5% level for 64 threshold probabilities (all lying 
between 0.06 and 0.72) while they did not significantly 
differ at the remaining 35 thresholds (either below 0.06 or 
higher than 0.72).

Trapezoidal numerical integration

The above method provides a pointwise comparison 
(e.g.,  one P value for each threshold probability) 
between decision curves of two competing models. 
However, in some situations one would like to have a 
single (global) P value to compare two models over a 
range of threshold probabilities. Area under the net 
benefit curve (A-NBC) is a summary statistic for the 
performance of the model in the range of threshold 
probabilities of interest. This method is criticized for 
not considering the fact that the threshold probabilities 
are not uniformly distributed in the range of interest 
(9,10). However, we proposed that this will be valid for 
a small range of pt. Here, we present the method for 
comparing A-NBCs of two models using trapezoidal 
numerical integration. In mathematics,  and more 
specifically in numerical analysis, the trapezoidal rule 
(also known as the trapezoid rule or trapezium rule) 
is a technique for approximating the definite integral. 
The trapezoidal rule works by approximating the region 
under the graph of the function f(x) as a trapezoid and 
calculating its area. The difference in the trapezoidal 
area of two NBCs is the statistic of interest.

> areadiff<-function(data,ii,outcome,frm1,frm2,

xstart=0.01,xstop=0.99,

step=0.01,type="treated"){

dd<-data[ii,]

nb1<-ntbft(dd,outcome=outcome,frm=frm1,

xstart=xstart,xstop=xstop,

step=step,type=type)

nb2<-ntbft(dd,outcome=outcome,frm=frm2,

xstart=xstart,xstop=xstop,

step=step,type=type)

area1<-0; area2<-0

for(i in 1:(nrow(nb1)-1)){

area1<-area1+(nb1$pred[i]+nb1$pred[i+1])*step/2

area2<-area2+(nb2$pred[i]+nb2$pred[i+1])*step/2

}

cat(".")

return(area2-area1)

}

The areadiff() function has several arguments, most of 
them are similar to that described in previous sections. Here 
the xstart and xstop arguments define the range of interest. 
Then, we use the boot() function to replicate the difference 
in the A-NBCs. For example, we can compare our simple 
and full model using 1,000 bootstrap replications over the 
threshold range 0.01–0.1 as follows:

> set.seed(128)

> R<-1000; xstart.test<-0.01

> xstop.test<-0.1

> boot.area<-boot(data=dt,statistic=areadiff,

R=R,outcome=outcome,frm1=model1,

frm2=model2,xstart=xstart.test,

xstop=xstop.test,step=step,type=type)

> glopvalue<-mean(abs(boot.area$t-boot.area$t0)>

abs(boot.area$t0))

> cat("\n","global p-value over threshold probabilities",

xstart,"-",xstop,"=",glopvalue,"\n")

global p-value over threshold probabilities 0.01 - 0.99 = 0.021

The result shows that the P value for the difference in 
A-NBC between in the threshold range from 0.01 to 0.1 is 
0.021 (we have thus a significant difference between the two 
models on that threshold range).

The ADAPT index

The ADAPT values obtained by the all and null models 
are used as the boundary for the competing models. The 
following R code generates ADAPT curve for the models in 
our example (Figure 5).
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> adapt.simple<-ntbft(data = dt,

outcome = outcome,

frm = model1,type = "adapt")

> adapt.full<-ntbft(data = dt,outcome = outcome,

frm = model2,type = "adapt")

> adapt<-cbind(adapt.simple,adapt.full[,4])

> names(adapt)[c(4,5)]<-c("simple","full")

> plot.ntbft(adapt,ymin = 0,legpos=c(0.9,0.2))

The rmda package

The rmda (previously called DecisionCurve) package is well 
suited for the purpose of drawing decision curves (11). It is 
different from our routines in several aspects: (I) the rmda 
package allows display of the cost:benefit values at the bottom 
of the decision curve plot, which corresponds to relevant 
threshold probability values; (II) it reports the standardized 
net benefit; (III) it provides functions for alternative 
plots showing measures of clinical impact or the components 
of the ROC curve (true/false positive rates) across a range of 
risk thresholds. However, the rmda package does not allow 
the calculation of the ADAPT index, and comparing decision 
curves of competing predictive models.

> library(rmda)

> simple.model <- decision_curve(sepsis.tag~rr + hr,

data = dt,

study.design = "cohort",

policy = "opt-in",

bootstraps = 150)

> full.model<-decision_curve(sepsis.tag~rr + hr+crp,

data = dt,

study.design = "cohort",

policy = "opt-in", #default

bootstraps = 150)

> dev.new(width=5, height=4)

> plot_decision_curve(list(simple.model, full.model),

curve.names = c("Simple model", "Full model"),

xlim = c(0, 1),

legend.position = "bottomright")

Figure 6 shows the decision curves for the simple and full 
models.

Summary

This article is a technical note showing how to perform 
DCA with an artificial dataset in R environment. In the 
decision curve, net benefit is plotted against threshold 
probability. The decision curve of a model is compared 
to extreme cases that treating all patients or none. A 
model is of clinical utility if the net benefit of a model is 
greater than treating all and none patients. Confidence 
interval and comparisons of two decision curves can be 
made using bootstrap method. The comparison of two 
decision curves can be made at a pointwise fashion that 
a P value is reported for each threshold probability. 
Furthermore, the comparisons of two decision curves 
can be made by using A-NBC within a certain threshold 
probability range. However, A-NBC is criticized for not 
considering the uneven distribution of the threshold 
probability. The weighted area under decision curve is an 
alternative to address this limitation. Our routines have 
been illustrated using the concept of net benefit for the 
treated but they can be equally applied to the net benefit 
for the untreated, the overall net benefit, or the ADAPT 
criterion.
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Figure 5 ADAPT curves for the simple and full models. The 
boundary is defined by the null (green dashed line) and all (red 
solid line) models. The full model is consistently superior to the 
simple model across all threshold probabilities. ADAPT, average 
deviation about the probability threshold.
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Figure 6 Decision curves obtained by the rmda package. Note 
there is a cost:benefit ratio scale at the bottom which corresponds 
the threshold probability to the cost: benefit ratio. At a very low 
value of threshold probability, the patient would choose to be 
treated even if the risk of disease is very low. This means the cost: 
benefit ratio is also very low. As an extreme example, when there 
is no cost for a treatment, all patients will choose to be treated 
irrespectively of the disease risk. Mathematically, the threshold 
probability (pt) and cost (C) benefit (B) can be related to each 

other by the equation: 1
t

t

pC
B p
=

− . The preference of the patients and 
clinicians is implicitly expressed by the threshold probability.


