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Abstract: Artificial neural networks (ANNs) are powerful tools for data analysis and are particularly 
suitable for modeling relationships between variables for best prediction of an outcome. While these models 
can be used to answer many important research questions, their utility has been critically limited because the 
interpretation of the “black box” model is difficult. Clinical investigators usually employ ANN models to 
predict the clinical outcomes or to make a diagnosis; the model however is difficult to interpret for clinicians. 
To address this important shortcoming of neural network modeling methods, we describe several methods 
to help subject-matter audiences (e.g., clinicians, medical policy makers) understand neural network models. 
Garson’s algorithm describes the relative magnitude of the importance of a descriptor (predictor) in its 
connection with outcome variables by dissecting the model weights. The Lek’s profile method explores the 
relationship of the outcome variable and a predictor of interest, while holding other predictors at constant 
values (e.g., minimum, 20th quartile, maximum). While Lek’s profile was developed specifically for neural 
networks, partial dependence plot is a more generic version that visualize the relationship between an 
outcome and one or two predictors. Finally, the local interpretable model-agnostic explanations (LIME) 
method can show the predictions of any classification or regression, by approximating it locally with an 
interpretable model. R code for the implementations of these methods is shown by using example data fitted 
with a standard, feed-forward neural network model. We offer codes and step-by-step description on how to 
use these tools to facilitate better understanding of ANN.
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Introduction

Artificial intelligence (AI) methods, especially those based 
on machine learning methods, are rapidly becoming 
essential for analysis of complex clinical and other data, 
and for decision support in the clinic (1-4). Artificial 

neural networks (ANNs) are highly parameterized, non-
linear models with sets of processing units called neurons 
that can be used to approximate the relationship between 
input and output signals of a complex system (5). While 
ANNs can be used as powerful predicting tools compared 
to more conventional models (e.g., linear regression), they 
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are also criticized as ‘black boxes’. Compared to linear 
methods, ANN models are very difficult to interpret and it 
is challenging to identify which descriptors (predictors) are 
the most important and how they are related to the property 
being modeled. The hyper-parameterized structure of 
neural networks creates complex functions from the input 
that can approximate observed outcomes with minimal 
error (6). As such ANNs can approximate any continuous 
function, as postulated by the Universal Approximation 
Theorem, but the immediate structures of a fitted model do 
not provide insights into the relative importance, underlying 
relationships, structures of the predictors or covariates with 
the modelled outcomes.

As an example, neural networks can be used to predict 
clinical deterioration in adult hematologic malignancy 
patients (7). The input is a set of predictors P  (diastolic 
blood pressures, heart rate, white blood cell count, etc.) and 
the output is an outcome O (ICU transfer, cardiac arrest, 
discharge). The neural network model finds a mathematical 
function f (P) =O, where f can be arbitrarily complex, 
and might change according to the sample of the study 
population. The black box issue is that the approximation 
given by the neural network will not provide insight into the 
form of f as there is often no simple relationship between 
the network weights and the property being modeled. 
Even the analysis of the relevance of input variables is  
challenging (8), and neural networks do not generate a 
statistically identifiable (deterministic) model. For a given 
training dataset and network topology, there can be multiple 
neural networks with different weights that generate very 
similar predictions of the modeled property, complicating 
understanding of the ANN and relevant predictors. In 
contrast, a generalized regression model is an example 
of the “non-black box models”, generating interpretable 
models with reproducible regression coefficients and 
a closed form function f where the importance of each 
predictor is explicitly and clinically interpretable.

Recognizing the issue, many methods have been developed 
to help subject-matter audiences to understand the underlying 
functions of ANN. This article provides an overview of 
several of the most common algorithms and illustrates how 
they perform using examples. The R statistical programming 
language (version 3.4.3) is used in the following examples.

Working example

An artificial data set that mimics a clinical situation was 
generated for the examples.

> set.seed(123)

> n<-500

> age <- round(rnorm(n,70,15))

> gender<-sample(c("male",'female'),

size=n,replace = T,

prob = c(0.6,0.4))

> lac <- round(abs(rnorm(n,4.5,2)),1)

> type <- sample(c("surgery","emergency",

"medical"),

size=n,replace = T,

prob = c(0.3,0.4,0.3))

> vaso <- sample(c("No",'Yes'),

size=n,replace = T,

prob = c(0.7,0.3))

> wbc <- round(abs(rnorm(n,10,5)),1)

> crp <- round(abs(rnorm(n,150,80)),1)

> library(dummies)

> beta0=-30; betaMed=0.3

> betaSur=-3; betaAge=0.3

> betaLac=2; betaVaso=3

> betaGender=-0.1; betaWbc=-0.2

> betaCrp=0.05

> linpred <- cbind(1, dummy(type)[, -1],age,

lac,dummy(vaso)[,-1],

dummy(gender)[,-1],wbc,crp) %*%

c(beta0,betaMed,betaSur,betaAge,betaLac,

betaVaso,betaGender,betaWbc,betaCrp)

> pi <- exp(linpred) / (1 + exp(linpred))

> mort <- rbinom(n=n, size=1, prob=pi)

> dt <- data.frame(age,gender,lac,

type,vaso,wbc,crp,mort)

The above code generates seven predictors (descriptors): 
age, gender, lactate (lac) type of patients type (type), use 
of vasopressor (vaso), white blood cell count (wbc), and 
C-reactive protein (crp). The mortality (mort) is binary 
clinical outcome variable which takes two values 0 for alive 
and 1 for deceased. The relationship between mort and 
predictors are built under the logistic regression model 
framework. However, we will build a neural network model 
in the following example.

Fitting a neural network model

There are several types of machine learning methods that 
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could be used to generate models but we use a neural 
network model in our examples. Several packages are 
available in R to develop an ANN. The nnet package (version 
7.3-12) is widely used and can fit a single-hidden-layer 
neural network (9). The caret (Classification And Regression 
Training) package (version 6.0-78) contains a set of tools for 
building machine learning models in R (10).

> library(caret)

> set.seed(123)

> mod<-train(factor(mort)~age+

gender+lac+type+vaso+

wbc+crp, method = "nnet",

data = dt, verbose = FALSE,

trControl=trainControl(method='cv',

verboseIter=FALSE),

tuneGrid=expand.grid(.size=c(5,10,15),

.decay=c(0,0.001,0.01,0.1)))

> modcont<-train(factor(mort)~age+

lac+wbc,

method = "nnet",

data = dt, verbose = FALSE,

trControl=trainControl(method='cv',

verboseIter=FALSE),

tuneGrid=expand.grid(.size=c(5,10,15),

.decay=c(0,0.001,0.01,0.1)))

The above code fits two neural network models. The 
first one model mod is fit with the train() function using 
all seven predictors. In the model, cross validation is used 
to select the best model by tuning the parameters size and 
decay. In general, the size parameter defines the number 
of hidden nodes in the network, which are essentially free 
parameters that allow flexibility in the model fit between 
input and output layers. Increasing the number of hidden 
nodes increases the flexibility of the model but at the risk 
of over-fitting. The decay parameter is more abstract, in 
that it controls the rate of decay for changing the weights 
as used by the back-propagation fitting algorithm. This 
also affects how regular or irregular the weights can be 
relative to each other—with potential for over-fitting and/
or increasing non-linearity in the fit. In the example, the 
number of hidden units (size parameter) is chosen from 5, 
10 and 15, and the decay parameter is chosen from 0, 0.001, 
0.01, and 0.1, depending on which model has the best 
accuracy. More details of how the train() function works 

with neural network model can be found at http://topepo.
github.io/caret/ . The second model, modcont, contains only 
continuous variables as the predictors including age, lac  
and wbc.

Variable importance using Garson’s algorithm

The weights connecting neurons in an ANN are partially 
analogous to the coefficients in a generalized linear 
model. The combined effects of the weights on the 
model predictions represent the relative importance 
of predictors in their associations with the outcome 
variable. However, there are many weights connecting one 
predictor to the outcome in an ANN. The large number 
of adjustable weights in an ANN makes it very flexible 
in modeling nonlinear effects but imposes challenges 
for the interpretation. Garson proposed that the relative 
importance of a predictor can be determined by dissecting 
the model weights (11,12). All connections between each 
predictor of interest and the outcome are identified. 
Pooling and scaling all weights specific to a predictor 
generates a single value ranging from 0 to 1 that reflects 
relative predictor importance. The relative importance can 
be computed in R with the NeuralNetTools (version 1.5.1) 
package (13).

> library(NeuralNetTools)

> round(garson(mod,bar_plot = FALSE),3)

rel_imp

age 0.165

gendermale 0.064

lac 0.170

typemedical 0.027

typesurgery 0.239

vasoYes 0.136

wbc 0.136

crp 0.064

The relative importance of each predictor is shown in the 
above output. The results suggest that surgery type is the 
most important predictor of mortality outcome, followed 
by lactate (lac) and age. The relative importance of each 
predictor can be plotted by setting the bar_plot argument to 
TRUE (the default setting in the garson() function).

> garson(mod)
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Figure 1 displays the relative importance of each 
predictor. The garson() function returns a ggplot object (14), 
and the default aesthetics can be further modified with the 
following code.

> library(ggplot2)

> cols <- rainbow(8)

> garson(mod) +

scale_y_continuous('Rel. Importance',

limits = c(0, 0.25)) +

scale_fill_gradientn(colours = cols) +

scale_colour_gradientn(colours = cols)

Figure 2 shows how the plot aesthetics can be changed 

from the default output of the garson() function. Furthermore, 
the neural network model can also be visualized with the 
plotnet() function.

> plotnet(mod_in = mod)

Figure 3 is a diagram of the neural network architecture. 
The black lines indicate positive weights and grey lines 
indicate negative weights. Line thickness is in proportion 
to the relative magnitude of each weight. The first layer 
receives the input variables (I1 through I8) and each is 
connected to all nodes in the hidden layer (H1 through 
H5). The output layer (O1) is connected to all hidden 
layer nodes. Bias nodes provide a function that is similar 
to the intercept term in a linear model and are shown as 
connections to the hidden and output layers in the plot.

Sensitivity analysis using the Lek’s profile 
method

The Lek’s profile method can be used to explore the 
relationship between the outcome variable and a predictor 
of interest, while holding other predictors in a set of 
constant values (e.g., minimum, 20th quantile, maximum) 
(15,16). The relationship between an outcome and a 
predictor might differ given the context of the other 
predictors (i.e., the presence of an interaction) and the 
sensitivities may vary at different points of the surface given 
the ability of the model to describe nonlinear relationships. 
In essence, the method generates a partial derivative of the 
response with respect to each descriptor and can provide 
insight into these complex relationships described by 
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Figure 1 Relative importance of each predictor using Garson’s 
algorithm as implemented in the NeuralNetTools package for R. 
Surgery type is the most important variable, followed by lac, age 
and WBC.
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Figure 2 Modifications of the relative importance plot using the 
ggplot system. The colors, axis labels and limits can be modified.

Figure 3 Neural network interpretation diagram. The black lines 
indicate positive weights and grey lines indicate negative weights. 
Line thickness is in proportion to relative magnitude of each 
weight.
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the model. The Lek’s profile method is only applicable 
to models with continuous explanatory variables, so the 
modcont model is used for illustration.

> lekprofile(mod_in = modcont) +

ylab("Mort. likelihood")

Figure 4 shows output from Lek’s profile method using 
the lekfrofile() function in the NeuralNetTools package. 
By holding other predictors at their minima, at 20th, 40th, 
60th, 80th quantiles, and at their maximum (6 groups in the 
figure), the relationships between the outcome probability 
and predictor of interest varies widely for the variable wbc.

If there are categorical (discrete) variables in a given 
dataset, the following code can be used to look at the model 
response across the range of values for one explanatory 
variable at a time. The final plot was created using facets for 
selected levels of the discrete explanatory variables. You can 
specify which continuous explanatory variable to evaluate 
with the varex object and you can change the quantile at 
which the other explanatory variables are held constant 
using the quant object.

> library(tidyverse)

# variable to evaluate,

> varex <- 'age'

#quantile for holding other variable constant

> quant <- 0.5 #median value

# variables to predict

> xvals <- dt %>%

select(-mort) %>%

as.list %>%

enframe %>%

mutate(value = pmap(list(name, value),

function(name, value){

if(name == varex){

x <- range(value, na.rm = T)

x <- seq(x[1], x[2], length = 100)

} else {

if(is.numeric(value)){

x <- quantile(value, quant)

} else {

x <- levels(value)

}

}

return(x)

})) %>%

deframe %>%

cross_df

# get predictions

> prds <- predict(mod, newdata = xvals,

type = "prob") %>%

data.frame(prds = .) %>%

bind_cols(xvals)

> ggplot(prds, aes_string(x = varex,

y = 'prds.1', colour = 'vaso')) +

facet_wrap(gender ~ type) +

scale_y_continuous('Mort likelihood') +

geom_line()

The %>% operator is read as “and then”, and is piping 
an object forward into a function or call expression (17). 
Figure 5 shows Lek’s profile method for the predictor age 
at all combinations of other discrete variables. There are 
2×2×3=12 curves, e.g., there are 2 levels for gender, 3 levels 
for type and 2 levels for vaso. Continuous variables are held 
at their median, generating only 1 level.

Partial dependence plot

Partial dependence of an outcome variable on a predictor of 

Figure 4  Lek’s profile method for continuous predictors. By 
holding other predictors at constant values of their minimum, 20th, 
40th, 60th, 80th quantiles and the maximum (6 groups in the figure), 
the relationships between outcome probability and predictors of 
interest can be shown.
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interest can be calculated as follows (18):
(I)	 Suppose there are k observations, and i ∊ {1,2,3,...,k}. 

The variable of interest is denoted as x1 , with 
distinct values of {x11,x12,...,x1k}. The original values 
of x1 in the training dataset are replaced with the 
constant x1i.

(II)	 Compute the predicted values of an outcome 
variable from the modified training dataset.

(III)	 The average prediction for x1 is computed as 1( )if x .
(IV)	 The partial dependence plot is to plot the pairs 

1 1 1{ , ( )}i ix f x  for i ={1,2,3,...,k}.
The plot for a single predictor can be created with the 

pdp package (version 0.6.0) (18).

> library(pdp)

> library("viridisLite")

> partial(mod,plot=T,pred.var="age")

The above code loads and attaches the pdp and viridisLite 
packages to the R workspace. The viridisLite package 
(version 0.3.0) helps to design color maps which are 
perfectly uniform, both in regular form and also when 

converted to black-and-white. The package is also designed 
to aid perception by readers with the most common form 
of color blindness. The output in Figure 6 shows the 
relationship between age and yhat. The response variable is 
shown in logit scale.

> mod %>%

partial(pred.var = "age") %>%

plotPartial(smooth = TRUE, lwd = 2,

ylab = expression(f(wbc)))

The plotPartial() function is used to display a more 
detailed partial plot. It operates on objects returned by the 
partial() function and provides many options to modify 
the plot. The above example shows how to add a LOESS 
smooth line to the plot (Figure 7).

The pdp package can also be used to plot the response 
variable and two predictors as a 2-D or 3-D plot. 
Fortunately, the pdp package makes this work easy.

> pd <-partial(mod, pred.var = c("wbc","age"))
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Figure 5 Lek’s profile method for the predictor age at all combinations of other discrete variables. There are 2×2×3=12 curves, e.g., there 
are 2 levels for gender, 3 levels for type and 2 levels for vaso. Continuous variables are held at their mean, generating only 1 level.
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> rwb <- colorRampPalette(c("red", "white", "blue"))

> pdp1<-plotPartial(pd,contour = TRUE, col.regions = rwb)

> pdp2 <- plotPartial(pd, levelplot = FALSE,

zlab = "f()", drape = TRUE,

colorkey = TRUE,

screen = list(z = -20, x = -60))

> grid.arrange(pdp1, pdp2, ncol = 2)

To invest igate  the  s imultaneous  e f fect  of  two 

predictors on the predicted outcome, the pred .var 
argument in the partial() function takes a 2-element 
string vector indicating the names of the predictors of 
interest. In the second line, the colorRampPalette() 
function interpolates a set of given colors to create new 
color palettes. The first plot, pdp1, is a 2-D contour 
plot that was created by setting the contour argument to 
TRUE. The second plot, pdp2, is a 3-D surface plot that 
is created by setting the levelplot argument to FALSE. 
Finally, the grid.arrange() function combines the two 
plots into a single image (Figure 8) arranged in a 1×2 
matrix (19).

However, the above figures display the outcome variable 
on a linear scale, which is not interpretable for most subject-
matter audiences. The probability of the outcome can be 
displayed by specifying a function for the transformation 
from logit space to a probability.

> pred.prob <- function(object, newdata) {

pred <- predict(object, newdata, type="prob")

prob.mort <- pred[,2]

mean(prob.mort)

}

There are two arguments for the pred.prob() function. 
The first argument is the object that receives the trained 
ANN. The second argument is newdata as an optional set 
of data to predict. If newdata is not specified, the original 
dataset is used for prediction. The type argument in 
the predict() function can be either “raw” or “prob”. In 
this case, “prob” is used to return class probability. The 
following code plots the partial dependence plots and 
combines them into one using grid.arrange().

> pdp.age <- partial(mod,

pred.var = "age",

pred.fun = pred.prob,

plot = TRUE)

> pdp.crp <- partial(mod,

pred.var = "crp", pred.fun = pred.prob,

plot = TRUE)

> pdp.age.crp <- partial(mod, pred.var = c("age", "crp"),

pred.fun = pred.prob, plot = TRUE)

> grid.arrange(pdp.age, pdp.crp, pdp.age.crp, ncol = 3)

It is noted that the y-axis is now on a probability scale 
(Figure 9).
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plotPartial() function. A LOESS smooth line was added.
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Local interpretable model-agnostic explanations 
(LIME)

LIME can be used to explain the predictions of any 
classifications or regressions, by approximating it locally 
with an interpretable model (20). The “agnostic” descriptor 
suggests that the tool can be used to provide insight into 
a process that “is not known or cannot be known”, which 
is especially relevant to the “black box” characteristics of 
a neural network model. Essentially, LIME can be used 
to interpret complex models by providing a qualitative 
link between the input variables and the response. This is 
accomplished by dissecting and locally approximating the 
larger model with simpler models, such as linear or decision 
tree models, that are conceptually easier to understand and 
interpret. The lime package (0.4.0) is used to perform the 
LIME algorithm (21).

> library(lime)

> explanation<-lime(dt,mod)

> exp<-explain(dt[8:11,], explanation,

n_labels = 1, n_features = 7)

The lime() function is the core function of the package. 
The first argument is the training data, which is the dt 
dataset used to create the models in the above examples. 
The second argument is the neural network model mod 
that need to be explained. The lime() function returns an 
explainer object that is passed to the explain() function. 
The explain() function takes new observations (e.g., 
patients 8 to 11 in the example data) along with the 
explainer object and returns a matrix with prediction 
explanations, one observation per row. The returned 
explanations can then be visualized with several plot 
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Figure 8 Partial dependence plot for the relationship between two predictors and the outcome. Two-dimensional contour and 3-D plots are 
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functions provided by the lime package.

> plot_explanations(exp)

The plot_explanations() function draws a facetted 
heatmap-style visualization of all case-feature combinations 
(Figure 10). The case numbers are shown in the horizontal 
axis and categorized features are displayed in the vertical 
axis. There are two types of outcome events for mortality, 
denoted as 0 and 1 in the right and left panels, respectively. 
Cases 8 and 9 are survivors (mort =0) and cases 10 and 11 
are non-survivors (mort =1). Feature weights are shown 
with the colors. Positive (green) weights suggest a feature is 
supporting the outcome, and negative (red) weights suggest 
a feature is contradicting the outcome. In the example, 
age younger than 61 is shown in green for survivors (left 
panel) and negatively associated with mortality. In contrast, 
use of vasopressor (vaso = yes) is red in the left panel and 
green in the right panel, and is a risk factor for death. 
This plot is important for the understanding of how the 
ANN makes predictions. Clearly, Clinicians reserve their 

own judgements in decision making, but the interpreted 
neural network models that predict patient outcomes (e.g., 
patient very likely to die because he/she is very old and uses 
vasopressors) can be critically important supporting element 
of the overall decision process.

> plot_features(exp, ncol = 2)

Finally, the supporting and contradicting features to 
make a mortality prediction can be plotted for each patient 
with the plot_features() function. The function requires 
only the explanation output and number of columns as 
input arguments. The feature plot is shown in Figure 11.

Discussion

Due to their “black-box” nature, many machine learning 
methods suffer from the limitation of providing meaningful 
interpretations that can enhance understanding in subject-
matter research. This article reviewed and demonstrated 
several methods to help clinicians understand neural 
network models of important patient parameters and 

Figure 10 Facetted heatmap-style visualization of all case-feature combinations for four selected patients. The case numbers are shown in 
the horizontal axis and categorized features are shown in the vertical axis.
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outcomes. One or several of the illustrated methods will be 
suitable for essentially any type of clinical outcome model. 
Applicability of interpretation algorithms may be somewhat 
case dependent. The methods suggested in this review can 
be applied to ANN, random forest and many other black-
box types of methods. The step-by-step instructions and R 
code provided herein offer an approach for researchers to 
open the black-box by providing visual presentations and 
clear interpretations of the analysis results.

This work has a few limitations. First, the recommended 
methods only present the predicted means, but not the 
corresponding level of uncertainty. Second, we focus 
on reviewing useful tools to facilitate interpretation of 
the results. The technical details related to the model 
evaluation, and cross-validation, and techniques to avoid 
overfitting were not discussed. At last, prediction models 
are fundamentally different from explanatory models. The 
interpretation of the results obtained from a prediction 
model reflects the association between the predictor and the 
outcome after adjustment of other covariates included in the 
same model. It may not directly offer causal interpretation.
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