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Background: SUR1, one of the subunits of ATP-sensitive potassium (KATP) channels, was found to be 
highly expressed in mRNA levels in the substantia nigra (SN) of Parkinson’s disease (PD) brains. Though the 
mechanism of the selective dopamine (DA) neurons death is still unknown, some studies have demonstrated 
that selective activation of the KATP channels in the SN might be associated with the degeneration of DA 
neurons. The objective of our study is to examine the expressions of KATP channel subunits in dopaminergic 
cells with alpha-synuclein (α-Syn) transfection.
Methods: In this study, we detected the KATP channel subunits mRNA levels in MES23.5 cells by real-time 
quantitative PCR after the cells transfected with α-Syn.
Results: Our results showed that the mRNA levels of SUR1 subunit were markedly increased by 35% in 
WT α-Syn overexpression cells and by 31% in A53T α-Syn overexpression cells, respectively. However, the 
mRNA levels of SUR2B and Kir6.2 subunit have no obviously differences from the controls. 
Conclusions: We showed that the mRNA levels of SUR1 but not SUR2B or Kir6.2 were selectively 
upregulated in MES23.5 cells over-expressed with α-Syn. The findings demonstrated that the SUR1 
overexpressed might be involved in the process of PD.
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Introduction

Parkinson’s disease (PD) is one of the leading neurodegenerative 
diseases in elderly, which is pathologically caused by the 
progressive loss of dopaminergic (DAergic) neurons in the 
substantia nigra (SN), and a formation of alpha-synuclein (α-Syn) 
aggregates in Lewy bodies throughout the brain. However, 
the mechanism of the selective DAergic neurons death is still 
unknown (1-3).

The mRNA levels of SUR1 subunit of KATP channels in 
the remaining DA neurons were increased in SN region of 

PD brains, and some studies have also addressed that the 
mRNA expression of SUR1 in the nigral DAergic neurons 
was approximately two-fold to that in the ventral tegmental 
area (VTA) in a PD animal model (4,5), suggesting that 
specific activation of the KATP channels in the SN might be 
related to the regression of DAergic neurons. KATP channels 
were first demonstrated in the mammalian heart cells (6). In 
brain, KATP channels are ubiquitously expressed, especially in 
the cortex, basal ganglia, hippocampus, hypothalamus, and 
nigral DAergic neurons (7,8). In nigral DAergic neurons, 
KATP channels are more sensitive to some mitochondrial 
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complex I inhibitors, like rotenone or 1-Methyl-4-phenyl- 
1,2,3,6-tetrahydropyridine (MPTP) (9). KATP channels 
consist of Kir6.x (Kir6.1 or Kir6.2) subunits and SUR 
(SUR1 or SUR2) subunits (10,11). Three subtypes of KATP 
channels, SUR1, SUR2B, and Kir6.2, have been identified 
in the midbrain DAergic neurons (12). Of these, SUR1/
Kir6.2 subtype of KATP channels were extremely sensitive to 
mitochondrial complex I blockers, which is about 200 times 
as big as SUR2B/Kir6.2 subtype of KATP channels (13).

This study examines the expressions of KATP channel 
subunits in α-Syn-transfected cells. The mRNA levels 
of SUR1 but not SUR2B or Kir6.2 were selectively 
upregulated in these cells.

Methods

Reagents

The MES23.5 cells were obtained from Stem Cell Bank 
(Chinese Academy of Sciences). The GV230 vectors 
that carrying cDNA encoding WT or A53T α-Syn 
were purchased from GeneChem Co., Ltd. (Shanghai, 
China). Fetal Bovine Serum (FBS), Trizol Reagent and 
Lipofectamine 2000 were purchased from Invitrogen (CA, 
USA). Dulbecco’s modified Eagle’s medium (DMEM) and 
other chemical drugs were obtained from Sigma (St. Louis, 
MO, USA).

Cell culture

The MES23.5 cell, a DAergic cell line, is obtained from the 
murine neuroblastoma glioma N18TG2 cells hybridized 

with the rat mesencephalic neurons. It owns a number of 
properties which are resemble to the DAergic neurons from 
the SN. MES23.5 cells were maintained in DMEM which 
contained FBS (10%), Sato’s (2%), penicillin (100  U/mL) 
and streptomycin (100 U/mL) in a humidified atmosphere 
containing 5% CO2 at 37 ℃, and seeded into the 6 wells 
plastic plates (1×105 cells per well).

Cell transfection

To observe the expressions of distinct KATP channel 
subunits, the cells were separated to three groups: GV230 
vector group, WT α-Syn group and A53T α-Syn group. 
In the control group, GV230 vectors were transfected into 
MES23.5 cells alone. In the over-expression group, cells 
were transfected with the WT or A53T α-Syn in a serum-
free medium. This relatively high efficiency of infection of 
MES23.5 cells were harvested for the further studies. All 
vectors were transfected using Lipofectamine 2000. For 
optimal transfection efficiency, five volume of DNA relative 
to lipofectamine 2000 was used.

Total RNA extraction and real-time quantitative PCR

Total RNA was harvested using Trizol Reagent based on 
the manufacturer’s protocols. A total of 2 μg RNA was 
reversely transcribed into cDNA using a First Strand cDNA 
Synthetic Kit. The mRNA levels of KATP channel subunits 
were detected using quantitative PCR with SYBR Green 
reagents. The primer sequences used as follows: SUR1 
(forward: 5'-CCC TAG CTG TGG TGT GCT ACT 
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Figure 1 WT α-Syn or A53T α-Syn up-regulated the mRNA levels of SUR1 subunit. The results in the real-time quantitative PCR test 
showed that the mRNA expression of SUR1 (A) subunit was increased, and SUR2B (B) and Kir6.2 (C) were unchanged in MES23.5 cells-
transfected with α-Syn. All data were represented as mean ± SEM of six independent experiments. *P<0.05.
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TCA-3'; reverse: 5'-GGG GCT GCG TTG TGT CATC-
3'); and SUR2B (forward: 5'-TGG AGC TGA CAG ACA 
CGA ACA AC-3'; reverse: 5'-GAA CAA TGC ACG CTC 
CCA GA-3'); and Kir6.2 (forward: 5'-ATG GCC CTG ACA 
GGC AAG AG-3'; reverse: 5'-CCA AGT TGG CCA GAC 
AGA CAG A-3'). GAPDH purchased from Takara was served 
as a normalization control. The amplification was carried out 
according to the following steps: the mixture was preheated 
at 95 ℃ for 30 s, followed by 5 s, 95 ℃ and 34 s, 60 ℃  
for total 40 cycles. Relative mRNA levels were calculated by 
the 2−ΔΔCt method.

Statistical analysis 

All data were presented as mean ± SEM. Statistical analysis 
was performed using Graphpad 5.0. One-way analysis of 
variance (ANOVA) with Tukey’s multiple comparison tests 
were carried out for multiple comparisons. Values of P<0.05 
were deemed to be significant.

Results 

Increased SUR1 mRNA levels were observed after α-Syn 
transfection

We detected the expressions of distinct subunits of KATP 
channels in transfected MES23.5 cells with WT or A53T 
α-Syn for 24 hrs. The results illustrated that the mRNA 
levels of SUR1 were increased by 35% and by 31%, 
respectively, when were compared with that in the control 
(Figure 1A). SUR2B and Kir6.2 were slightly increased 
in A53T α-Syn group, but there were no significances 
observed (Figure 1B,C).

Discussion

In our study, the mRNA levels of SUR1 were found 
increased in either WT α-syn or A53T α-Syn transfected 
MES23.5 cells, while there were no effects on Kir6.2 and 
SUR2B transcriptions.

Though the precise mechanisms underlying the PD 
pathology are still unknown, some evidence has shown 
that selective activation of SUR1/Kir6.2 subtype of KATP 
channels in SN may lead to the degeneration of DA 
neurons. The transcript levels of SUR1 subunit of KATP 
channels in the remaining DA neurons were increased in SN 
of PD brains (4). The increased SUR1 subunit expression 
could promote the transport, expression and activation of 

KATP channel in membrane (14,15). Previously, our studies 
had reported that the activation of KATP channels enhanced 
iron uptake mediated by divalent metal transporter 1 
(DMT1) in SK-N-SH cells, implicating an important role 
of KATP channels on the cell membrane hyperpolarization. 
Furthermore, a decrease in ratio of ATP/ADP and an 
increase in the production of ROS induce additional 
KATP channels activation in a feed-forward cycle (16).  
In both PD patients and animal models, neuroscientists 
found the SUR1 subunit of KATP channels was highly 
expressed in the remaining nigral DAergic neurons, and 
the SUR1 subunit was involved in KATP channels trafficking 
to the cell membrane (4,5). An increase in the number of 
functional KATP channels which triggered burst firing might 
compensate the loss of nigrostriatal dopamine-induced by 
the progressive degenerations of DAergic neurons (17). 
Nevertheless, the constant burst firing of DAergic neurons 
triggered by KATP channels could lead to excitotoxicity, 
elevate calcium loading, reduce calcium buffering capacities, 
cause the ROS production, and a variety of processes which 
result in detrimental effect to DAergic neurons in a long 
term (18-20).

In pancreatic β-cells, SUR1 expressions are regulated 
by many factors, such as Hsp90, insulin, PKA, FOXA1 and 
FOXA2 (21-23). FOXA1 and FOXA2 are so-called “pioneer 
proteins”, which could facilitate access of other transcription 
factors by binding to condensed chromatin in promoters 
and enhancer regions tightly (24). FOXA1 and FOXA2 are 
members of the winged-helix/fork head transcription factors 
which play a major role in the development of midbrain DA 
neurons during the early and late embryonic period (25-27).  
Moreover, FOXA1 and FOXA2 are also necessary for the 
maintenance of appropriate firing patterns of SN pars 
compacta neurons. It has been showed that the burst firing 
of nigral DAergic neurons is reduced in response to the 
deletion of FOXA1 and FOXA2 (28). FOXA1 and FOXA2 
may regulate the expression of SUR1 subunit of KATP 
channels in DA neurons.

In conclusion, we showed that the mRNA levels of SUR1 
but not SUR2B or Kir6.2 were selectively upregulated in 
MES23.5 cells over-expressed α-Syn. Therefore, the present 
study could provide a new evidence for the influence of KATP 

channels in the loss of DAergic neurons in PD.
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