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Principal components analysis in clinical studies
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Abstract: In multivariate analysis, independent variables are usually correlated to each other which can

introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal

components analysis (PCA) over these variables. This method uses orthogonal transformation to represent

sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs

are ordered so that the first PC has the largest possible variance and only some components are selected to

represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial

illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are

responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
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Introduction and motivating example

Clinical studies utilizing electronic healthcare records
(EHR) usually present a large number of variables. These
variables frequently correlate with each other, which will
introduce multicollinearity in the regression models (1).
Although the problem of collinearity will not compromise
the predictive ability of a regression model, it can interfere
in determining the precise effect of each predictor.
Additionally, the standard errors of the estimations affected
by multicollinearity tend to be large, making the inference
over such estimations less precise (wider confidence
intervals and bigger P values).

The problem of multicollinearity in clinical studies is
ubiquitous, and there are many statistical methods being
developed to handle it (2). One of the most used methods
is the principal component analysis (PCA). This statistical
approach reduces a set of intercorrelated variables into a
few dimensions that gather a big amount of the variability
of the original variables (3). These dimensions are called
components and have the properties of collecting highly
correlated variables within each component and being
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uncorrelated with each other (4). An example of the
application of this method can be found in Witteveen et al.’s
article (5). The authors performed an observational study
aiming to investigate the value of early systemic inflammation
in predicting ICU-acquired weakness (5). Systemic
inflammation can be represented by a variety of inflammatory
cytokines such as interleukin (IL)-6, IL-8, IL-10,
1L-13, tumor necrosis factor (TNF)-a and interferon
gamma (IFNy). These cytokines are correlated with each
other, and incorporation of them into a regression model
will result in significant collinearity. One type of cytokine
is regarded as one dimension, and there are dozens of
dimensions in the original dataset. In the study, the authors
employed PCA to reduce the dimension. They found that
the variance of these ten cytokines can be accounted for by
three principal components (PC). As a result, the model was
remarkably simplified. The aim of this tutorial is to provide
readers with a step-by-step guidance on the performance
of PCA, highlighting the interpretation of the output from
R codes. Also, the R syntaxes will be explained in as many
details as possible, helping readers adapt the syntaxes to
their own work.
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Dataset simulation

In this article, a dataset is simulated to illustrate the
performance of PCA using R. One advantage of simulation is
that the underlying structure of the dataset can be controlled.
In the example, we set two PCs (y1 and y2) accounting for
the variance of the five independent variables X=[x;, x,, X3, X4,
xs]. While x1 to x5 represent the observed values, y1 and y2
are PCs and, therefore, they do not represent actual data that
measures a concrete characteristic of the population under
study. Dataset is simulated so that, predictors with subscript
of odd number x1, x3 and x5 are responsible for the variation
in y2, and predictors with subscript of even number are
responsible for the variation in y1.

> simData <- function(n) {

y1 <-rnorm(n)

y2 <- rnorm(n)

z=yl+y2+rnorm(n)

pr=1/(1+exp(-z))

df <- data.frame(y=as.factor(rbinom(n,1,pr)))
ySum <- list(yl,y2)

for(iin 1:5) {

vari <- ySum[[1+(i%%2)]] + rnorm(n)
df[[paste("x",i,sep=")]] <- ncol(df)*vari+ncol(df)
}

df

}
> set.seed(666)
> df<-simData(1000)

The database was simulated by using a function that
was named as simDara() with a single parameter 7 that
represents the total number of observations we will include
in the dataset (1,000 in our case). The linear predictor of
the logistic regression model is defined as the sum of yl1,
y2 and a random variance term. Then the linear predictor
is converted to the probability. Given the assumption that
the outcome is binary and follows binomial distribution, the
rbinom() function is employed to simulate the outcome y.
The binary outcome variable y is converted to a factor with
as.factor() function. The two PCs y1 and y2 are aggregated
in a list to facilitate its use in for() loop. The symbol “% %”
is a modulus operator that distinguishes even and odd
numbers. To make the mean and variance of each x to be
different, the variance of each x is scaled and centered by the
number of columns at each loop. Notice that the number of
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columns is increased by one for each loop. Finally, a dataset
with 1,000 observations is made up with set.seed() function
to make sure that the results are reproducible.

We can have a look at the mean and variance with the
following codes.

> lapply(df[,-1],function(x) {

df.sum<-data.frame(mean=mean(x),

sd=sd(x))

]
$x1

mean sd
1 1.0419681 1.496501
$x2

mean sd
1 1.876087 2.844405
$x3

sd mean
1 3.133103 4.1716136
$x4

mean sd
1 4.147199 5.601982
$x5

mean sd
1 5.249925 7.115041

The lapply() function applies user defined function to
the corresponding element of dff,-1]. Here the function
is applied to each column of the data frame dff,-1]. The
lapply() function returns a list of the same length as the
number of dff,-1]. The means are increased approximately
by at a step of 1 from xI to x5. The standard deviations
of x1 to x5 are also increasing. The purpose of this step
it to mimic the real world setting where variables are not
centered at the mean of 0 and scaled to the unit variance.

Principal components analysis (PCA)

The most popular function to perform PCA is the prcomp()
function shipped with the base R installation.

The first decisions that should be made are:

(I) Which variables will be included in the PCA: in this
case the 5 correlated independent variables included in the
PCA are x1 to x5.

(IT) Rotation of the variance-covariance matrix: rotation
of the variance-covariance matrix usually facilitates the
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Figure 1 Schematic illustration of how the principal components

analysis works.

interpretation of the components. However, this is not
always the case. It is advisable to try the PCA with and
without rotation and select the most easily interpretable
output. In this case we are using the rotated results.

> prcom<-prcomp(~.-y,df,scale.=T,center=T)
> prcom

Standard deviations:

[1] 1.4300133 1.2221462 0.7316328 0.6887995 0.6720784
Rotation:

PC1 PC2 PC3 PC4 PC5
x]l 0.58079283 -0.004483858 0.34042830 0.2263993 -0.7039258
x2 0.05066609 -0.705158055 0.54549778 0.2330974 0.3850751
x3 0.56929755 0.085674284 -0.46255853 0.5305290 0.4160995

x4 0.02697392 -0.703686343 -0.60316141 -0.1863703 -0.3249005

x5 0.57903829 0.014746535 0.09368381 -0.7604039 0.2783999

The first argument of prcomp() function is a formula
without outcome variable. Only numeric variables are
allowed. The second argument specifies the data frame
that contains the variables in the formula. The “scale.=T”
indicates that the variables are scaled to have unit variance,
and “center=T" is to shift the mean to zero. By default, the
rotated variables will be returned by setting “retx=T". The
standard deviations of the five principal components are
shown at the beginning of the R output. It is noted that the
first two components have the largest standard deviations.
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The loadings that characterize the role of each variable (x1-
x5) in each component (PC1-PCS5) are conveyed afterwards.
As can be observed, PCA analysis reports as many PCs as
the number of variables included in the analyses. Loadings
have two properties: (I) their sum of squares within each
component are the component’s variance (eigenvalue); and
(II) they are coefficients in linear combination predicting a
variable by the (standardized) components (see calculation
of PC1 and PC2 below).

The rule is to select principal components with the
largest variance. Consider a dataset in x-y coordinate
system, if we want to tease out variation, PCA finds a new
coordinate system in which every point has a new (x,y)
value. The axes PC1 and PC2 make up a new coordinate
system, and they are combinations of the x-y (Figure 1).
It is obvious that the points projected to PC1 have larger
variance than that projected to PC2. As a result, PC1 is a
better representation of these data.

The eigenvalue measures the explanatory “strength” of
a particular PC. The variance of each PC can be visualized
with screeplot() function. Usually a few PC explain a high
amount of the variability and some of them need to be
selected. The screeplot is used to make this decision as
explained below.

> screeplot(prcom, npcs = 5,type = "lines")

The first argument of screeplot() is an object containing
a sdev component, which is returned by the prcomp()
function. The “npes=5” specifies the number of PCs to be
plotted. The type of plot is specified with type = “lines”
argument. The plot shows a deep drop for PC1 and PC2
that stabilizes from PC3 onwards, indicating that the first
two PCs collect most of the total variance (Figure 2). The
importance of each PC can be viewed in the summary()
output.

> summary(prcom)

Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.430 1.2221 0.7316 0.68880  0.67208
Proportion of Variance 0.409 0.2987 0.1071 0.09489  0.09034
Cumulative Proportion 0.409 0.7077 0.8148 0.90966 1.00000

The standard deviation of each component is shown in
the first row of the output table. The second row shows the
proportion of variance explained by each component. It
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Figure 2 Screeplot representing the variances of all principal

components.
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Figure 3 Graphical display of multivariate data with biplot.

appears that the first two PCs account for 70% of the total
variance. The last row shows the cumulative proportion of
variance.

"To decide which variable is represented by each PC, a cut
point for the values of the loadings is selected that might
vary depending on the type of study. For biological markers,
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this cut point usually is around 0.5 (5), for nutritional data
usually is around 10.31 (6,7) and for other type of studies
it might be different depending on the natural correlation
between the independent variables included in the PCA.
In the current example, if the cut point is set at 0.5, it can
be clearly seen that PC1 represents the variability of x1, x3
and x5 and PC2, represents the variability of x2 and x4. In
this case PC1 and PC2 will be kept in representation of x1-
x5 and the scores that measure the degree of compliance of
each of the 1,000 observations of the sample with both of
them will be calculated as follows:

PC1 = 0.58xx1 + 0.05xx2 + 0.57xx3 + 0.03xx4 + 0.58xx5

The observations that score high in PC1, show high
values of x1, x3 and x5 (positive loadings over the cut point
of 0.5).

PC2 = —0.00 x x1 — 0.71 x x2 + 0.09 x x3 — 0.70 X x4
+0.01 x x5

The observations that score high in PC2, have low
negative values of x2 and x4 (negative values below the cut
point 10.51).

This two PCs are linearly uncorrelated (—9.18067x107%7).

Results of PCA for real data might be more challenging.
Usually the number of predictors included in the PCA is
bigger and, in consequence, the number of PCA selected
might also be bigger and difficult to assess. The general
rule is to select the principal components with the largest
variance with the help of the screeplot and keep only those
that, explaining enough variance, make epidemiological
and/or clinical sense.

Advanced visualization tools

A biplot is a graphical display of multivariate data and can
be used in PCA (8). The biplot() shipped with prcomp()
function is a good example to display multivariate data in a
2-D plane.

> biplot(prcom)

The biplot() takes the object prcom returned by prcomp()
function. The number of each observation is displayed in
the figure, together with the original five axes (Figure 3).
The figure is a projection of high dimension space onto a
2-D plane. Note that the xs with odd subscript point to the
right, whereas the xs with even subscript point downward.
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Figure 4 Graphical display of multivariate data with biplot.

The biplot can be modified to show points with different
outcome status. The package for the purpose is available

from the Github.

> library(devtools)

> install_github("ggbiplot", "vqv")

> library(ggbiplot)

> g <- ggbiplot(prcom, obs.scale = 1, var.scale = 1,
ellipse = TRUE, groups=df$y,

circle = TRUE)

> g <- g + scale_color_discrete(name = ")

> g <- g + theme(legend.direction = 'horizontal',
legend.position = 'top")

> print(g)

Points with outcome 0 are displayed in red and those
with outcome 1 are in green. The axis labels show that
PC1 explains 40.9% of the total variance, and PC2 explains
29.9% (Figure 4).

Variable loadings can be visualized. The data must be
preprocessed before calling plotting functions.

> prcom5<-prcom$rotation
> df.prcom = as.data.frame(prcom35)
> df.prcom$varName = rownames(df.prcom)

> library(tidyr)
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> df.long.prcom = gather(df.prcom, "PC", "loading",
starts_with("PC"))

As above-mentioned the rotation is a matrix of variable
loadings which is extracted and assigned to an object called
prcom5. Then the prcom$5 object is converted to a data
frame. We add an additional variable called varName to
store the row names of the df.prcom. Finally, we called the
gather() function from tidyr package and reshape the data
frame into a “long” format.

> library(ggplot2)

> ggplot(df.long.prcom,

aes_string(x="varName", y="loading", ymax="loading"))+
geom_point() +

geom_linerange(aes(ymin=0))+

facet_wrap(~PC,nrow=1) +

coord_{flip() +

ggtitle("variable loadings for principal components")

The plot is drawn with the ggplot system, in which the
elements of a figure can be added layer-by-layer. There
are five panels in the figure, each representing one PC.
The horizontal axis is the loading values, and the vertical
axis is the variable names. It appears that PC1 is primarily
contributed by x1, x3 and x5, whereas PC2 is mainly
accounted for by x2 and x4 (Figure 5).

Regression analysis after PCA

After dimension reduction, the next step is usually to
perform regression analysis to explore the association
of PCs with outcome variable y. Instead of including
the five correlated independent variables (x1-x5) in the
model, the two uncorrelated PCs are included, solving the
multicollinearity problem.

> df.projected <- as.data.frame(predict(prcom,df[,-1]),
stringsAsFactors = FALSE)

> df.projected$y<-df$y

> ncomp = 2

> regvar = paste(paste("PC", l:ncomp, sep="),
collapse="+")

> fmla = paste("y ~", regvar)

The projected values in each PC must be obtained from
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Figure 5 Component loadings that characterize the strength and
sing of the association of each independent variable (x1-x5) with

each principal component (PC1-PCS5).

PCA. They can be obtained using predict() function, or the
x component of the prcom object (prcom$x). Both of these
functions calculate the PC1 to PCS5 scores as specified in the
formulas above. The dff,-1] contains variables with which
the predict() function predicts values in each PC for each
subject. Then the matrix is converted to a data frame by
as.data.frame() function. The returned object df.projected
has 1,000 rows and 5 columns. Each one of the columns
contain a score that measures the level of compliance of
the 1,000 observations with each of the 5 components. The
outcome y is then attached to the df.projected data frame.
The number of components are set to 2. The function
paste() is used to connect names of PCs. The returned
string will be used as a formula in building the regression
model.

> mod.com <- glm(fmla,family=binomial,data=df.projected)
> exp(coef(mod.com))

(Intercept) PCl1 PC2

0.9709691 1.6487058 0.85998146
> exp(confint(mod.com))

2.5% 97.5%
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Table 1 Regression analysis showing the association between the

selected principal components and outcome

PC Odds ratio (95% CI)

Main loadings of PC

PC1 1.65(1.49-1.83) x1, x3, x5

PC2 0.60 (0.53-0.68) X2, x4

PC, principal component; Cl, confidence interval.

(Intercept) 0.8480303 1.1116326
PCl 1.4878115 1.8339611
PC2 0.5305985  0.6753215

The glm() function is used to fit a generalized linear
model. By setting the family argument to “binomial”,
the glm model is a logistic regression model. The glm()
function first takes a formula “y ~ PC1+PC2”, in which
only two PCs are included in the model. The results show
that both PC1 and PC2 are significantly associated with
outcome y. The exponentiation of regression coefficient
gives the odds ratio, which is clinically interpretable. The
results can be presented as that in 7able 1 and interpreted
as follows: A high compliance with PC1 (high values of x1,
x3 and x5) increases a 65% the odds of having the outcome
and a high compliance with PC2 (low values of x2 and x4)
decreases a 40% the odds of having the outcome.
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