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Overcoming resistance to BRAF inhibitors
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Abstract: The discovery of activating mutations in the serine/threonine (S/T) kinase BRAF followed by a 
wave of follow-up research manifested that the MAPK-pathway plays a critical role in melanoma initiation 
and progression. BRAF and MEK inhibitors produce an unparalleled response rate in melanoma, but it is 
now clear that most responses are transient, and while some patients show long lasting responses the majority 
progress within 1 year. In accordance with the key role played by the MAPK-pathway in BRAF mutant 
melanomas, disease progression is mostly due to the appearance of drug-resistance mechanisms leading to 
restoration of MAPK-pathway activity. In the present article we will review the development, application 
and clinical effects of BRAF and MEK inhibitors both, as single agent and in combination in the context of 
targeted therapy in melanoma. We will then describe the most prominent mechanisms of resistance found in 
patients progressed on these targeted therapies. Finally we will discuss strategies for further optimizing the 
use of MAPK inhibitors and will describe the potential of alternative combination therapies to either delay 
the onset of resistance to MAPK inhibitors or directly target specific mechanisms of resistance to BRAF/
MEK inhibitors.
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Introduction

Before the discovery of activating mutations in the BRAF 
gene in melanoma, metastatic melanoma was considered a 
cancer with the direst prognosis. Classical chemotherapy 
regimens and the prodrug dacarbazine provided little 
therapeutic opportunities for clinicians trying to manage 
this deadly form of skin cancer. In 2002, a seminal study 
performed by the Cancer Genome Project at the Sanger 
Institute identified BRAF mutations in over 60% of 
melanomas (1). This groundbreaking discovery initiated 
great scientific efforts to dissect the role of BRAF and the 
MAPK-pathway in melanoma initiation and progression. 

Today we know that BRAF is mutated in around 50% of 
melanomas (2) and, by activating the MAPK-pathway, is the 
main driver of melanoma development. The substitution 
of a valine for a glutamic acid at position 600 is the most 
common mutation found in BRAF (2,3). BRAFV600E 
strongly activates the MAPK-pathway in melanocytes in 
culture (4), where it eventually induces senescence (5). 
Intriguingly, this mutation is also found in up to 80% of 
human benign moles or nevi (6), which are considered 
senescent clones of melanocytes. In conjunction with 
INK4A inactivation BRAFV600E transforms melanocytes 
in vitro (4). Targeted expression of BRAFV600E in the 
melanocyte lineage in vivo induces melanoma formation, 
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and its onset can be accelerated by INK4 or PTEN 
deficiency or concomitant UV exposure (7-9). 

While the detection of BRAF mutations majorly 
influenced the approach to melanoma therapy, the 
recognition of the importance of the MAPK-pathway 
for melanoma biology actually preceded the discovery of 
BRAF as an oncogene. Indeed, studies into cell signaling 
in a fish model for melanoma (10,11) and the use of early-
stage MEK inhibitors such as PD908059 and U0126 (12,13) 
demonstrated the early activation of the MAPK-pathway 
during melanoma development in vivo, as well as its 
relevance for melanoma cell proliferation and its potential 
as therapeutic target. In 2002, Cohen et al. reported 
constitutive ERK-phosphorylation in >20% of benign nevi 
and >80% of primary melanoma (14), and hence confirmed 
activation of MAPK-signaling as an early event in human 
melanoma development. Pre-clinical studies developed over 
the following 15 years have underscored the importance 
of the BRAF-MAPK pathway in a multitude of processes 
involved in melanoma development and progression and 
BRAFV600E has been established as central for the control 
of melanoma cell proliferation and cell cycle progression, 
apoptosis, migration, invasion, glucose metabolism, 
adaptation to hypoxia or angiogenesis (3,15-22). Indeed it 
has now become well accepted that melanomas harboring 
BRAF mutations are addicted to the MAPK-pathway, as 
BRAFV600E cells show significant sensibility towards 
either genetic or chemical inhibition of this pathway. 

BRAF inhibitors as single agent

A few years after the seminal study by the Sanger institute 
the serine/threonine (S/T) kinase inhibitor sorafenib (BAY 
43-9006), which possesses activity against CRAF (23) was 
trialed in solid tumors including melanoma (24). Dose 
limiting toxicity and probably due to its low specificity 
towards mutant BRAF, limited clinical effect, and led to 
sorafenib being discarded as an anti-melanoma treatment 
although its application has shown certain success against 
other neoplastic diseases such as renal cancer (25,26). The 
first drug developed to specifically target BRAFV600E was 
Vemurafenib (PLX4032). Vemurafenib is a small molecule 
reversible inhibitor with specific affinity for the ATP-
binding pocket of the constitutively active mutant form of 
BRAFV600E, where it binds to the active site of the kinase 
domain in its “DGF-in” conformation to block access to 
ATP (27,28). In early phase I and II trials (BRIM-1 and 
BRIM-2) vemurafenib showed unprecedented clinical 

responses (56% and 53%, respectively) and complete 
response in up to 6% of cases with 15.9 months of median 
overall survival (OS) and a median progression-free survival 
(PFS) of 6.7 months (29,30). BRIM-3, a phase III trial of 
vemurafenib extended to patients with mutations V600E, 
V600K and V600D demonstrated a median OS and PFS 
of 13.6 and 6.9 months respectively (31). More recently 
another potent inhibitor against mutated BRAF, Dabrafenib 
(GSK2118436), was shown to mirror the effects observed 
with vemurafenib (32). The unprecedented efficacy of 
these drugs changed the way clinicians managed melanoma 
patients, but soon the long-term suitability of these drugs 
to treat melanomas harboring activating mutations in the 
BRAF gene was questioned. Apart from the appearance of 
a wide range of adverse effects, the more concerning fact 
was the appearance of skin-related effects within the first 
3 months that included the development of squamous cell 
carcinomas and keratoacanthomas in 10–20% of melanoma 
patients treated with BRAF inhibitors (29-31,33-35). 
These secondary cancers were subsequently found to be 
induced by the “paradoxical activation” of CRAF by BRAF 
inhibitors in pre-existing keratinocytic lesions harboring 
wild-type BRAF, but activated RAS (36,37). While clinically 
manageable, these discoveries prompted further studies, 
which found that indeed, BRAF inhibition can accelerate 
the development of pre-existing RAS mutant malignancies 
including NRAS mutant leukemias or K-RAS mutant 
pancreatic or colon adenocarcinomas (38-41).

Despite great initial responses the main problem 
regarding the use of BRAF inhibitors remains the fact they 
are short lived because within a year the majority of patients 
no longer respond to treatment and relapse (31,42). In 
addition, ~20% of patients harboring activating mutations 
in BRAF present intrinsic resistance and do not respond to 
BRAF inhibitors (30,31,43), which limits the effectiveness 
of this therapeutic approach.

Mechanisms of resistance to BRAF inhibitors

Work into understanding the mechanisms by which 
melanoma cells evade BRAF inhibitor therapies revealed 
that the majority of resistances are centered around the 
reactivation of the MAPK-pathway (Figure 1), which further 
highlights the central role played by this signaling cascade 
in BRAF mutated melanomas. Alternatively, mechanisms 
of escaping BRAF inhibitor induced cytotoxicity have 
been described that are independent of re-activation of the 
MAPK-pathway (Figure 1). 



Annals of Translational Medicine, Vol 5, No 19 October 2017 Page 3 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2017;5(19):387atm.amegroups.com

MAPK pathway reactivation

The detailed analysis of melanomas from relapsed 
patients found that in 70% of cases a plethora of different 
mechanisms allow melanoma cells to bypass BRAF 
inhibition by maintaining MEK activation in a BRAF 
independent manner, which will ultimately restore ERK 
dependent signaling (44,45).

Upstream of BRAF the overexpression of NRAS, 
activating mutations in the NRAS protein or loss of the 
GTPase-activating protein NF1 leads to BRAF independent 
MEK activation (Figure 1) (46,47). Furthermore, increased 
activity of MEK emanating from several receptor tyrosine 
kinases (RTKs) such as EGFR, IGF-1R, or PDGFR has 
also been found to be present in relapsed melanomas 
(Figure 1) (46,48,49). At the level of the RAF kinases, CRAF 
overexpression, BRAF gene amplification and the presence 
of BRAF truncations (as a consequence of alternative 
splicing) permit maintenance of ERK activation (50,51), 
while downstream of BRAF, overexpression or mutation 
of MEK itself or its activators, COT/TPL2/MAP3K8 or 
MLKs, have also been described to reactivate the pathway 
(Figure 1) (52-57).

MAPK-reactivation independent mechanisms of resistance 
to BRAF inhibitors

Apart from reactivation of ERK through the RAS-CRAF-
MEK-ERK route, RAS dependent parallel activation of 
the PI3K/AKT pathway downstream of IGF-R or MET 
receptors can also contribute to limit cytotoxicity resulting 
from RAF inhibition (49,58). Moreover mutations in this 
pathway, notably activating mutations in AKT and loss 
of function mutations in PTEN (observed in 6–7% of 
melanomas and leading to PI3K activation) have been 
described in melanomas resistant to BRAF inhibitors 
(Figure 1) (44,59). Upon BRAF inhibitor treatment, ERBB3 
receptor hyper-phosphorylation also promotes survival of 
BRAF mutated melanoma in an AKT dependent manner 
(60,61). Indeed the activation of the PI3K pathway seems to 
act as a cell death-evading mechanism through regulation 
of expression of apoptosis regulators such as BCL2 or  
BIM (58,62,63).

Another regulator of anti-apoptotic survival genes such 
as BCL2A1 and BCL2 is MITF, the master regulator of 
melanocytes and melanoma biology (17,64). High MITF 
levels allow melanoma cells to evade cell death triggered 

Figure 1 Resistance to BRAF inhibitors can occur through stromal extracellular signals (blue) leading to ERK reactivation upstream of 
MEK (orange) or to enhanced survival signaling(green). Pathway re-activation occurs through either activating NRAS mutations (*), loss of 
the RAS suppressor NF1, BRAF amplification or alternative splicing leading to BRAF truncations, overexpression or mutation of the MEK 
activators CRAF, MLK or COT/TPL2/MAP3K8 as well as MEK mutations (*). Enhanced survival signaling is brought about by the PI3K 
pathway [mutations in PI3K or AKT (*)] or for instance by over-expressed MITF. Stromal derived signals can emanate from fibroblasts or 
macrophages; thereby macrophages can release factors that directly act on melanoma cells or factors that activate fibroblasts.
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by BRAF (and MEK) inhibitors even when the MAPK 
pathway appears fully blocked (65,66). Accordingly, 
MITF gene amplification is found in a small percentage 
of progressed melanomas (45). Furthermore, MITF is 
upregulated by BRAF/MEK-inhibitor treatments through 
a MAPK-dependent re-wiring of the transcriptional 
control of MITF expression (67). This rewiring appears to 
happen in the initial phases of patient treatment, because 
~80% of melanomas show a significant induction of MITF 
expression, and this allows melanoma cells to enter a drug-
tolerance phase in the early steps of MAPK inhibitor 
treatment (67).

Another type of resistance is linked to increased RTK 
signaling, which is correlated with high expression of the 
RTK AXL (65,68). While RTK dependent melanoma cells 
are less frequently found before treatment with BRAF 
inhibitors, high expression of AXL is observed in ~50% of 
relapsed melanomas (69). Intriguingly, high AXL expression 
in melanoma cells is accompanied with low expression of 
MITF thus defining an AXLhigh/MITFlow phenotype. This 
AXLhigh/MITFlowphenotype does not only display innate 
resistance to BRAF inhibitors and increased invasiveness, 
but also represents a more de-dedifferentiated state (65). 
Thus the role of MITF in the response of melanoma cells 
to MAPK inhibitors is complex: the presence of MITF 
is a marker for responsiveness to treatment, but when 
MITF expression is upregulated, it confers resistance to 
MAPK inhibitors. On the other hand very low levels of 
MITF when co-existing with high levels of the RTK AXL 
protect melanoma cells from BRAF inhibitor induced 
cytotoxicity. Taken together it seems that the responsiveness 
of melanoma cells to BRAF inhibitors lies between two 
different “MITF-states” with the plasticity of tumors cells 
to switch from one state to the other being a determining 
factor to adapt to MAPK pathway inhibitors (64). It would be 
of interest to assess in patient samples whether the relative 
proportion of AXLhigh/MITFlow and AXLlow/MITFhigh might 
have predictive value towards the determination of patients 
responsiveness to BRAF inhibitor based therapies. 

Non-cell autonomous derived resistance to BRAF inhibitors

Tumors are heterogeneous and not only harbor cancer 
cells, but also stromal cells that can both positively 
and negatively impact on tumor growth, metastatic 
potential and importantly, on response to therapies. As 
such fibroblasts can protect melanoma cells from BRAF 
inhibition. Thereby, Hepatocyte Growth Factor (HGF) 

secreted from stromal fibroblast can restore ERK activity 
through CRAF by stimulating the MET tyrosine kinase 
receptor (58). Tumor associated fibroblasts can also provide 
resistance by modifying the extracellular matrix (ECM), 
which induces integrin mediated Focal Adhesion kinase  
activation (70). Apart from fibroblasts, macrophages by 
secreting Tumor Necrosis Factor, can activate NFkB 
signaling in melanoma cells to upregulate the expression 
of MITF and allow melanoma cells to evade MAPK 
inhibitor induced cytotoxicity (71). Macrophages have also 
been shown to produce VEGF, which can reactivate ERK 
in the presence of BRAF inhibitors (72). Macrophages 
and fibroblasts can also act together in “inflammatory 
niches”, whereby macrophages secret IL1, which stimulates 
the production of GRO by fibroblasts. GRO activates 
CXCR2 signaling in melanoma cells, which overcomes 
BRAF inhibition as well as BRAF/MEK combination 
therapies (73). BRAF inhibition shows also efficacy in brain 
metastases (74), but it has been suggested that ERK- and 
PI3K-activating extrinsic factors contained in cerebrospinal 
fluid might contribute to BRAF inhibitor resistance in 
this setting (75). Finally, upon BRAF inhibitor treatment, 
specific soluble factors can sustain the proliferation of 
innate resistant cells that normally present as slow cycling 
cells in therapy naïve tumors (76,77).

The observed side effects and most prominently, 
the plethora of intrinsic/innate and acquired resistance 
mechanisms described above limit the efficacy of BRAF 
inhibitor based therapies in melanoma patients. 

Combinatorial BRAF and MEK inhibitor therapies

Prior and during the development of BRAF inhibitors, 
MEK, acknowledged as the only effector of BRAF had 
attracted interest as therapeutic target. Soon it was 
realized that melanomas harboring mutations in BRAF 
where significantly more sensitive to MEK inhibition than 
melanomas expressing mutant NRAS, which resulted in 
PI3K activation providing pro-survival signals (78,79). 
Indeed MEK inhibitors such as selumetinib (AZD6244), 
binimetinib (MEK162) or trametinib have shown clinical 
efficacy as single agents in melanomas with BRAF 
mutations (80-85). Nevertheless insufficient efficacy has 
hindered the application of MEK inhibitors as single 
agents. On the other hand the combination of BRAF and 
MEK inhibitors has shown great success in BRAF mutant 
patients and as a result, between 2014 and 2015 the FDA 
approved the use of trametinib/dabrafenib and cobimetinib/
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vemurafenib as standard of care for BRAF-mutant advanced 
melanoma. In these trials it was seen that in patients who 
previously developed resistance to dabrafenib the follow-
up treatment with a dabrafenib/trametinib showed limited 
clinical efficacy with an overall response rate (ORR) of 
around 10% and modest increases in OS and PFS, possibly 
dependent on the duration of previous BRAF inhibitor 
exposure (86). On the other hand, in BRAF inhibitor naïve 
patients BRAF/MEK-inhibitor combinations increase 
both overall OS and PFS when compared with the clinical 
effect of BRAF inhibitors only. Indeed, the cobimetinib/
vemurafenib combination increased median OS, which 
at the final analysis was 22.3 months (95% CI, 20.3–
not estimable) for cobimetinib and vemurafenib versus  
17.4 months (95% CI, 15.0–19.8) for placebo and 
vemurafenib (HR 0.70, 95% CI, 0.55–0.90; P=0.005)  
(87-89). Similar improvements were also observed in 
patients treated with trametinib/dabrafenib, and treatment 
with dabrafenib 150 mg twice daily plus trametinib 2 mg 
daily achieved a median OS of 27.4 months (95% CI, 12.9 
to not reached), with an OS at 1, 2, and 3 years of 72%, 
60%, and 47%, respectively (42,90,91). Despite slight 
differences on clinical endpoints both combinations provide 
equally evident benefit, and as previously mentioned 
have now become the standard of care for BRAF mutant 
melanomas (92,93). Combinations of BRAF and MEK 
targeting drugs provide further clinical benefits as the 
occurrence of cutaneous adverse events such as squamous 
cell carcinoma or keratoacanthoma is significantly 
diminished (94), positively impacting on patient’s health-
related quality of life (95,96).

Drug tolerance, acquired resistance and 
scheduling

Despite the immediate and, sometimes, long-lasting results 
achieved with combinatorial targeted therapies (42,88,97), 
most patients treated with combination therapies still 
relapse due to the development of resistance mechanism 
similar to those described above. The appearance of BRAF 
amplifications, BRAF splice variants and mutations in 
MEK1/2 have been described as mechanisms of cross-
resistance to both mono and combination therapy that 
involve reactivation of the MAPK-pathway (98,99), while 
MITF overexpression, known to confer resistance to both 
BRAF and MEK inhibitors is found in ~80% of patients 
on treatment with BRAF/MEK-inhibitor (67). A common 
view of the phenomenon of acquired resistance is that 

initially the presence of BRAF and MEK inhibitors induces 
a rewiring of the MAPK pathway allowing the tumors to 
develop drug tolerance (100,101). Following on from this, 
the responsiveness of the tumor to the kinase inhibitors 
eventually changes towards a permanent resistance program 
through either the selection for mutant clones or the 
establishment of new mutations in response to the signaling 
pressure exerted by the BRAF/MEK-inhibitor mediated 
MAPK blockade.

Recent studies suggest that by modulating the schedule 
of inhibitor administration in a way that prevents MAPK-
pathway rewiring tumor responsiveness to BRAF and MEK 
inhibitors over time is maintained. Pre-clinical studies 
propose an on-off schedule or drug-holiday to break the 
rewiring of the MAPK pathway (102,103), and this concept 
has been taken on board in the currently ongoing study 
GEM015 (https://www.clinicaltrialsregister.eu/ctr-search/
trial/2014-005277-36/ES). The theory of a long-term on-
off scheduling is further supported by the exciting outcome 
of a phase II trial in patients that had progressed on BRAF 
inhibitor and had been taken off drugs for at least 12 weeks. 
Thirty percent of these patients had partial responses and 
40% continued with stable disease (104). Intriguingly, 
while off BRAF inhibitors, all the patients in the trial had 
been treated with immunotherapies but had progressed, 
suggesting the potential of combining an on-off BRAF/
MEK-inhibitor treatment with anti-PD-1 or PD-L1 
antibodies (104).

Potential for alternative combination therapies

As previously mentioned ~70% of mechanisms of resistance 
involve reactivation of the MAPK pathway and of these 
~37% occur in a RAS-dependent manner (44). In addition, 
over 20% of patients relapse with activated PI3K signaling, 
be it through RAS or mutations in the PI3K pathway (44,45). 
Thus, in progressed tumors MAPK pathway activation is 
dependent on CRAF and not BRAF, and PI3K signaling 
is activated and provides pro-survival signals. With this 
in mind researchers have explored several approaches to 
prevent the development of resistance and/or provide 
therapeutic alternatives to progressed patients.

While in the post-sorafenib era the main goal had been 
to gain specificity towards mutated BRAF lately some 
effort has been put towards the development of small 
molecules directed to both BRAF and CRAF and capable 
to interfere with isoform hetero- and homo-dimerization 
thus preventing paradoxical activation of CRAF by BRAF 
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inhibitors (72,105-110). While this approach has provided 
promising results in pre-clinical models, their efficacy 
and the risk of adverse events will have to be tested in 
early phase trials (NCT02607813, www.clinicaltrials.gov). 
Another possibility to target RAF kinases is by means of 
interfering with the protein stability by using chaperone 
inhibitors. Heat Shock Protein 90 (HSP-90) regulates the 
stability and degradation of both BRAF V600E and CRAF 
(111,112) and HSP-90 inhibitors have been postulated 
as candidates to prevent BRAF inhibitor resistance 
(56,113,114). At present several trials are underway, which 
assess these compounds in combination with BRAF and 
MEK inhibitors in melanoma patients (NCT02097225, 
NCT02721459, NCT01657591, www.clinicaltrials.gov).

In line with the view of developing multi-targeted 
combination treatments there is a growing number of 
pre-clinical and even clinical studies underway testing 
the potential of broad spectrum RTKs and S/T kinase 
inhibitors as single agent or in combination with BRAF and/
or MEK inhibitors. The rationale of these approaches is to 
prevent or overcome MAPK inhibitor dependent resistance 
mechanisms, although the appearance of systemic toxicities 
remains one of the main concerns when combining several 
small molecules (115-119). Other groups have attempted to 
tackle mechanisms of resistance related to the appearance of 
mutations in MEK1/2 and novel MEK inhibitors active in 
some of these mutants show interesting potential (120). An 
avenue of action expected to draw increasing attention is the 
use of ERK inhibitors (121-123). Whether in combination 
with BRAF or MEK inhibitors, small molecule inhibitors 
such as SCH772984 and GDC-0994 are being tested at 
present. 

The central role of the PI3K signaling not only in 
melanoma development, but also in the innate and acquired 
resistance to MAPK inhibitors makes the PI3K/AKT/
mTOR axis the second most attractive target in melanoma 
(2,44,45). While in vitro studies clearly show the potential 
of using AKT, pan-PI3K or dual PI3K/mTOR inhibitors 
in combination with BRAF/MEK inhibitor, the translation 
into the clinical setting is troublesome due to enhanced 
systemic toxicities (124-128). The PI3K family of proteins 
is relevant in many physiological processes and malignant 
conditions but nevertheless this interest on the pathway is 
producing encouraging data advancing in the understanding 
of melanoma specific PI3K-signaling (129) and lately 
PI3Kβ isoform specific inhibitors are being developed and 
trialed in the context of PTEN mutant melanoma patients  

(130-132). Interestingly targeting the PI3K has not only 
been proposed as a strategy to overcome resistance to 
BRAF/MEK inhibitors, but also with the therapeutic goal 
of preventing the onset of MEK1/2 inhibitor resistance in 
BRAF-mutated melanoma (133).

The potential of extending the efficacy of MAPK-
inhibitor based therapies by targeting other melanoma 
relevant proteins is shown in a recent study (67), where 
in the above mentioned “drug-tolerance phase” when 
acquired resistance has not yet arisen, up-regulation 
of MITF contributes to increased survival signals. As 
previously mentioned in patients on BRAF/MEK inhibitor 
treatment MITF expression is upregulated, and this occurs 
through a transcriptional process in which PAX3 takes over 
the regulation of MITF transcription (66,67). A screen 
using FDA-approved drugs identified the HIV protease 
inhibitor Nelfinavir as inhibitor of MITF up-expression 
on treatment, and consequently Nelfinavir synergizes 
with BRAF and MEK inhibitors, suggesting that this 
combination could improve the efficacy and extend the 
clinical use of these drugs in BRAF mutant melanoma cells. 
Most importantly this study provides evidence suggesting 
the potential use of Nelfinavir mesylate in combination with 
MEK inhibitors in NRAS mutant cells and, importantly, 
in melanoma cells that progressed on BRAF/MEK 
inhibitors due to the appearance of activating mutations in  
NRAS (67).  This study emphasizes that a greater 
understanding of the biology of melanoma cells during the 
early response to MAPK inhibitors should still provide us 
with clues for a better use of these drugs.

Conclusions

Despite its limitations, the application of targeted therapies 
to melanoma has been a historic milestone in cancer 
therapeutics. Indeed the unprecedented responses observed 
in BRAF mutant patients and the existence of a significant 
number of long-term responder highlights the success, but 
also reflects the paramount importance that the MAPK 
pathway plays in cancer in general and in melanoma in 
particular. Nevertheless the early appearance of resistance 
mechanisms once again demonstrates the relentless ability 
of cancer cells to adapt to cytotoxic challenges directly 
targeting driving signaling pathways. More recently the 
advent of immune-checkpoint therapies has opened an 
extremely promising therapeutic opportunity for melanoma 
patients, but this should not lead to a dismissal of targeted 
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therapy approaches. Indeed, the recent “re-treatment” trial 
and continuous reports of pre-clinical studies describing 
novel combination approaches demonstrate that there is 
clearly room to improve the efficacy of the current BRAF/
MEK targeting therapies.

Nevertheless, there is still need to explore alternative 
avenues of action to provide new treatments based on 
targeted therapies tackling mechanisms of resistance 
to BRAF/MEK inhibitors. Considering this, there are 
aspects of melanoma biology that require attention from 
the scientific community to better use MAPK targeted 
therapies, but also to gain insight into yet unknown 
therapeutic opportunities. For instance there is a very 
thought-provoking report suggesting patient’s age as a 
factor influencing both responsiveness to BRAF inhibitor 
and metastatic potential (134). In this context, the role 
of the tumor stroma of melanoma response to targeted 
therapies is still understudied as it is the effect of targeted 
therapies in the metastatic niches in which secondary 
tumor arise: why should a pulmonary melanoma metastasis 
respond equally as a liver or brain metastasis? A more 
defined study of visceral metastases and the role of specific 
anatomic location-dependent stromal characteristics might 
provide useful insight into innate and acquired mechanisms 
of resistance/sensibility to BRAF/MEK inhibitors. The 
interplay between cancer cell metabolism and response to 
targeted therapies too warrants further research. A growing 
number of reports are linking nutrient metabolism (glucose, 
glutamine) and melanoma cells responsiveness to BRAF 
inhibition while at the same time it is clear that the MAPK 
pathway regulates glycolysis and oxidative phosphorylation 
(16,135-141). All these gaps in our understanding of 
melanoma biology and the potential of managing MAPK 
inhibitor schedules with drug-holidays or combination with 
immunotherapies shows that there is room for improvement 
to better manage advanced melanoma.
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