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Background: Urinary supersaturation is one key determinant of calcium oxalate (CaOx) urinary stone formation, 

and urinary excretions of oxalate and citrate are two key determinants. Each is influenced by gastrointestinal 

processes.

Methods: Open label and randomized placebo studies have examined the effect of oral probiotic preparations 

on urinary supersaturation and oxalate excretion. Cross sectional studies in humans have studied the association 

of Oxalobacter formigenes colonization status and urinary oxalate excretion and prevalence of urinary stones. The 

intestinal microbiome of representative animals adapted to a high oxalate diet has been defined. 

Results: The fecal content of O. formigenes, the best studied oxalate-degrader, varies depending on stone status. 

However, trials with probiotics designed to degrade oxalate including those containing O. formigenes, Lactobacillus, 

and/or Bifidobacterium spp., have been disappointing. Multiple intestinal segments of animals on a high oxalate diet 

contains diverse communities of microorganisms that can function together to degrade and detoxify a large oxalate 

load.

Conclusions: Although the intestinal microbiome seems likely to play a role to modify gastrointestinal 

absorption of lithogenic substances and hence urinary stone risk, whether we can develop tools to manipulate it and 

decrease this kidney stone risk remains to be determined. 

Keywords: Calcium oxalate (CaOx); Lactobacilli; microbiome; nephrolithiasis; Oxalobacter formigenes

Submitted Sep 30, 2016. Accepted for publication Oct 12, 2016.

doi: 10.21037/atm.2016.11.86

View this article at: http://dx.doi.org/10.21037/atm.2016.11.86

Introduction

Biology of calcium oxalate (CaOx) kidney stones

The urine of most humans is supersaturated and favors 
CaOx crystallization. Thus, perhaps it is not surprising 
that 70% or more of kidney stones are composed of 
CaOx (1). Given that the urine of most persons is 
supersaturated for CaOx, one might indeed wonder 
why everyone does not form stones. However, although 
supersaturation is key and requisite for stone formation, 
other biologic events are also implicated. These include 
the formation of anchored precursors within the kidney 
including Randall’s plaque and collecting duct plugs 
(2-5), macromolecules that control the rates of crystal 
growth and aggregation (6,7), and crystal internalization 

and processing by cells (8). These secondary factors are 
only partially understood, and not subject to therapeutic 
interventions at the present time. 

Fortunately, relatively more is known about the control of 
the urinary composition of stone forming salts. Key factors 
that determine urinary supersaturation include the urinary 
excretion of calcium, oxalate, citrate and water. Of these, 
evidence is strong that genetics greatly influence urinary 
calcium excretion (9), although diet is also an important 
modifier (10). Evidence also suggests that there are heritable 
components of the amount of urinary oxalate, citrate 
and even water (the latter likely mediated by thirst) (11).  
However, most likely environment (diet and fluid intake/
losses) are relatively more important for determining the 
urine composition. 
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Oxalate biology

Oxalate is a small dicarboxylic acid formed as an end 
product of metabolism by humans, largely in the liver (12).  
Oxalate is also found in certain plants, largely as CaOx 
crystals in the stems and leafs. Whatever oxalate is 
generated or absorbed from the diet, it must be eliminated 
in the urine (13). At least three genetic defects are known 
to cause primary hyperoxaluria (PH), which leads to over-
generation of oxalate in the liver (12). Whether or not other 
genetic variation in these or other genes underlies milder 
hyperoxaluria in the general population remains unknown. 

Because oxalate exists in plants is in the form of CaOx 
crystals, only a small amount is bioavailable for absorption 
(typically about 10% or less) (14). The majority of anionic 
oxalate is thought to be absorbed via a paracellular route 
(Figure 1) (15). Apical and basolateral transporters have also 
been demonstrated to have oxalate-transporting activity  
in vitro. Conversely, the role of transcellular oxalate 
transport in normal human biology remains unclear. 
Interestingly, however, knockout of SLC26A6 (the gene that 
encodes PAT1) results in hyperoxaluria due to decreased 
secretion of oxalate into the gut lumen in mice (16,17). 
Thus it has been hypothesized that increased degradation of 
oxalate by the intestinal microbiome could create a driving 
force for oxalate section into the gut, and hence reduce 

urinary excretion. Furthermore, certain bacteria might 
release soluble factors that increase PAT1 activity (18).

The majority of oxalate is eliminated by the kidney 
via filtration. A smaller amount can be secreted in the 
proximal tubule. The amount of oxalate secretion can 
increase in CKD, perhaps in response to increasing blood 
concentrations (19). Oxalate is not secreted or reabsorbed 
past the proximal tubule. Thus the oxalate concentration 
increases as water is reabsorbed along the nephron, 
reaching critical thresholds by the collecting duct where it 
can crystallize with calcium (19). This is undoubtedly a key 
factor in urinary stone risk, especially in regards to growth 
upon a preexisting nidus, since a urinary stone cannot 
develop in the absence of supersaturation. 

The gastrointestinal tract is a key player in oxalate 
biology. In normal individuals, only about 10% of 
ingested oxalate is absorbed, presumably because it is 
tightly complexed with calcium within the plant matter  
ingested (14). Factors that influence oxalate absorption 
include the amount of calcium and fat in the diet (20). It 
is thought that fatty acids bind calcium, and thus increase 
unbounds anionic oxalate that can then be absorbed 
paracellularly. Free calcium in the gut lumen can in turn 
bind up this anionic oxalate and prevent its absorption. 
Patients with any cause of fat malabsorption are thus at risk 

Figure 1 Oxalate transport in the intestine. (A) It is thought that the majority of oxalate is absorbed paracellularly. In states of fat 
malabsorption, increased fatty acids can bind calcium resulting in more oxalate ion free for absorption. Paracellular transporters to facilitate 
transcellular oxalate absorption include DRA (SLC26A3) on the apical surface that can exchange oxalate for bicarbonate, and SAT1 (SLC26A1) 
on the basolateral surface that can exchange oxalate for sulfate and other anions; (B) PAT1 (SLC26A6) in the apical surface can facilitate 
oxalate secretion into the lumen in exchange for chloride. SLC26A6 knockout mice are hyperoxaluric, presumably due to loss of this 
intestinal secretory pathway. 
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of enteric hyperoxaluria on this basis. 
On average, CaOx stone formers appear to absorb 

slightly higher percentage of oxalate from their food (14). 
The reasons are not known. Could this be due genetic 
alterations in oxalate transport, a tendency towards fat 
malabsorption, or changes in the intestinal microbiome? 
To date there are no clear answers. Typical treatments for 
stone patients with mild hyperoxaluria include a lower 
oxalate diet with adequate amounts of calcium. Preferably 
the calcium should be in food sources like dairy products, 
since calcium supplements might slightly increase stone 
risk (21). Lower fat intake is also a good idea, although not 
extensively studied outside of the group with clear enteric 
hyperoxaluria. It has been hoped that manipulation of the 
intestinal microbiome might also alter oxalate absorption.  

Citrate biology 

Citrate is thought to be an important crystallization 
inhibitor (22). Citrate complexes with filtered calcium 
and also has independent effects at the crystal surface to 
inhibit CaOx and brushite crystal growth (22,23). Some 
filtered citrate is reabsorbed in the proximal tubule, 
largely regulated by proximal tubule cell pH, with lower 
intracellular pH increasing citrate reabsorption (24). In 
the absence of renal tubular acidosis the net absorption 
of alkali by the gastrointestinal tract is thought to be 
the most important determinant of net urinary citrate 
excretion (25). Thus a diet weighted towards protein, 
chronic malabsorption states, hypokalemia, or distal 
renal tubular acidosis are the most common causes of 
hypocitraturia, which is found in 20–60% of calcium stone 
formers (24). Treatment is of the underlying disorder and/
or administration of potassium citrate are the available 
options (24). Given the key role of gastrointestinal function 
in citrate homeostasis, is seems likely that the microbiome 
might influence net alkali absorption, and hence urinary 
citrate excretion. However, no evidence to this effect has 
yet been published. Indeed, urinary citrate excretion did 
not increase in the kidney stone probiotic studies where this 
value was reported (26-28). 

Methods 

In this systematic review we present the results of open 
label and randomized placebo studies that have examined 
the effect of oral probiotic preparations on urinary CaOx 
supersaturation and oxalate excretion. We also discuss 

cross sectional studies in humans that have studied the 
association of O. formigenes colonization status and urinary 
oxalate excretion, and prevalence of urinary stones. Finally, 
we review what is reported regarding potential oxalate-
degrading organisms in the intestine of humans and 
animals. 

Results

Trials of Lactobacillus-containing probiotics for stone 
disease

Investigators have conclusively demonstrated that 
components of the endogenous digestive microflora can 
utilize oxalate, potentially limiting its absorption from the 
intestinal lumen (29). Probiotics containing Lactobacilli 
spp. have been commonly used to treat gastrointestinal 
symptoms such as antibiotic-induced diarrhea. Thus one 
might hope they would have favorable effects on urinary 
oxalate and/or citrate excretion. Oxadrop® was formulated 
specifically for potential treatment of hyperoxaluria (28). 
Each gram of the mix (Oxadrop®) contains 2×1011 bacteria 
(Lactobacillus acidophilus, L. brevis, Streptococcus thermophilus, 
and Bifidobacterium infantis). The different strains are 
mixed in a 1:1:4:4 weight and prepared as a granulate. 
The organisms were chosen on the basis of their ability to 
degrade oxalate in vitro. 

In an initial pilot study, Oxadrop® reduced urine oxalate 
excretion by 40% in a group of mildly hyperoxaluric 
CaOx stone formers (30) (Table 1). The hypo-oxaluric 
effect even lasted after a 1 month wash out period. In a 
subsequent study, a group of ten patients with various 
causes of enteric hyperoxaluria and stones were also treated 
with Oxadrop® (28). This study was also unblinded and 
thus lacked a placebo arm. Patients sequentially received 
4 g Oxadrop®, 8 g Oxadrop®, and 12 g Oxadrop® for  
1 month each. These data suggested a small effect at 4 and 
8 g, with a fall in urine oxalate excretion of about 20–25% 
(Table 1). The third month on 12 g of Oxadrop® the urine 
oxalate excretion was again close to baseline, after which it 
fell slightly after another washout month. Thus this study 
suggested there might be a dose-dependent effect of the 
preparation, or perhaps that the differences observed in 
urine oxalate excretion at the lower (and/or higher) doses 
were nonspecific and not related to the study drug at all.

Based upon these intriguing data, albeit inconclusive, 
a more rigorous randomized trial was completed in a 
population of 40 enteric hyperoxaluria stone formers (26).  
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Patients were randomized to Oxadrop®, placebo, or an 
alternative probiotic, Agri-King Synbiotic (AKSB) (Agri-
King Inc., Fulton, IL, USA). AKSB is a candidate synbiotic 
preparation extensively studied at Mayo Clinic that 
was hoped to have beneficial effects on gastrointestinal 
health, although there was no direct evidence it should 
influence oxalate metabolism directly (26). Subjects 
were given two AKSB capsules per day for a total of 1010 
organisms containing: (I) fructooligosaccharide (115 mg), 
manufactured as Ultra-FOS ST by Encore Technologies, 
Minnetonka, MN, as food-grade quality and is a prebiotic 
component of AKSB; (II) Enterococcus faecium [(E. faecium) 
SF68; 4.5 billion] produced by Cerbios-Pharma SA 
(Barbengo, Switzerland); (III) Saccharomyces cerevisiae subsp. 
boulardi (300 million), a yeast produced as Levucell SB 
by Lallemand Biochem International, Ontario, Canada, 
as ‘food-grade’ quality; and (IV) Saccromyces cerevisiae  
(200 million), a food-grade yeast produced as active dry 
yeast by SAF Corporation in Milwaukee, WI, USA. AKSB 
was developed by Agri-King with the primary aim of 
improving gut performance in animals so that the routine 
use of antibiotics in animal feeds could be reduced or 
eliminated. Studies in farm animals by Agri-King have 
confirmed that the preparation improves intestinal health 
and reduces the risk of illness when animals are challenged 
with food- or water-borne pathogens, and overall growth 
rates improve. 

In this randomized, placebo-controlled trial study 
patients were placed on a controlled metabolic diet 
with normal calcium (1,000 mg) and reduced oxalate  

(80–100 mg), appropriate for their CaOx urinary stone 
diagnosis. The diet itself was effective, reducing urine 
oxalate excretion by an average of 36%, with an overall 
improvement in urinary CaOx supersaturation. However, 
urine oxalate not fall further from this baseline on 
controlled diet with either probiotic or placebo. It is 
possible that the diet was “too effective”, in essence not 
leaving enough free oxalate within the gut lumen for the 
probiotics to degrade. Nevertheless, the more rigorous 
design than the previous studies suggests general use of 
currently available Lactobacillus-containing preparations may 
not work as well as initially hoped in patients with enteric 
hyperoxaluria. 

Subsequently, a 56-day randomized, placebo controlled 
trial of Oxadrop® was completed in 20 mildly hyperoxaluric 
stone formers, without known enteric hyperoxaluria and 
on a free choice diet (31). In this study, like the placebo-
controlled enteric hyperoxaluria study (26), no effect on 
urinary oxalate excretion was observed in either arm at 28 
or 56 days. 

As noted above, it has been hypothesized that oxalate-
degrading bacteria may require a certain amount of free 
oxalate to survive and/or thrive in the intestinal lumen. 
Thus Ferraz and colleagues studied a population of 14 stone 
formers (7 men and 7 women) on a low calcium (400 mg) 
and high oxalate (200 mg) diet (27). Under these dietary 
conditions urinary oxalate excretion did increase by 30% 
from the previous baseline on a free choice diet. However, 
addition of a Lactobacillus/Bifidobacterium preparation had no 
further effect on urinary oxalate levels. 

Table 1 Trials of Lactobacillus-containing probiotics for hyperoxaluria

Author Population Design Outcome

Campieri et al. (30) Mildly hyperoxaluric stone 
formers (n=6)

Unblinded; 4 g Oxadrop® for 30 days Urine oxalate dropped 40% at 30 days and 
remained down 50% at 60 days

Lieske et al. (28) Patients with enteric 
hyperoxaluria (n=10)

Unblinded; 4 g Oxadrop® for 30 days; then 
4 g for 30 days; then 12 g for 30 days

Urine oxalate dropped 19% at 30 days; 24% at 
60 days; 2% at 30 days; and 20% after a  
30-day washout

Lieske et al. (26) Patients with enteric 
hyperoxaluria (n=40)

Patients on controlled diet randomized to 
Oxadrop®, AKSB, or placebo for 4 weeks

No change from baseline (controlled diet alone) 
for any group

Goldfarb et al. (31) Stone patients with mild 
hyperoxaluria (n=20)

Randomized to placebo vs. Oxadrop® for 
56 days

No change in urine oxalate in either group at 28 
or 56 days

Ferraz et al. (27) Stone patients (n=14) Sequentially on high oxalate diet then 
high oxalate diet plus Lactobacilli and 
Bifidobacterium preparation

Urine oxalate increased on high oxalate diet 
with no effect of the probiotic

AKSB, Agri-King Synbiotic.
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Thus, on balance one can conclude that evidence from 
the more rigorous studies does not suggest that currently 
available Lactobacillus or other probiotic products and/or 
regimens of their administration can consistently reduce 
urinary oxalate excretion.  

Oxalobacter and oxalate metabolism

O. formigenes is an interesting organism. This obligate 
anaerobe utilizes oxalate as its sole energy source. The 
three key genes are the oxalate/formate antiporter (OxlT), a 
formyl coenzyme A transferase (frc), and oxalyl-coenzyme A 
decarboxylase (Oxc). Most humans become colonized with 
O. formigenes during childhood, but colonization can be 
lost later in adulthood, perhaps in response to antibiotics. 
The balance of dietary calcium and oxalate (and hence free 
oxalate in the gut lumen) appears to influence the amount 
of O. formigenes recovered from the stool (32). Thus, O. 
formigenes might be an inducible defense against ingestion 
of a high oxalate diet. 

Observational studies support a role for O. formigenes 
colonization in CaOx urinary stone risk. For example, in a 
large cross sectional study only 17% of 247 stone patients 
were colonized with O. formigenes, while 38% of 259 control 
patients were (33). Previous antibiotic usage was associated 
with colonization status. However, although the stone 
patients had higher urine oxalate excretion, colonization 
status did not correlate with urine oxalate excretion in these 
patients who were on a self-choice diet. 

In a smaller cross sectional study, eleven O. formigenes-
colonized stone formers were found to have a lower urine 
oxalate excretion (0.31±0.10 mM/day) compared to 26 non-
colonized stone formers (0.40±0.13 mM/day) (34). Non 
colonized stone formers were more likely to have a history 
of multiple stone events. Interestingly, the percent of 
absorption of an oral radiolabeled oxalate load did not vary 
between the two groups, despite the fact the plasma oxalate 
was significantly higher in the O. formigenes colonized 
group. Together, these observations are consistent with 
decreased gastrointestinal secretion of oxalate by the 
patients not colonized with O. formigenes. 

Because of evidence that oxalate can be secreted 
by rodents into their gut lumen (17), there has been 
great interest to test whether oral administration of O. 
formigenes might increase oxalate degradation within 
the gut lumen and possibly promote oxalate secretion 
amongst hyperoxaluric patients, even those with PH. 
The hoped-for net effect is to increase gut and decrease 

urinary oxalate elimination. Studies in a mouse model of 
type 1 PH support the possible effect of this strategy (35).  
Indeed, in a small unblinded pilot study of four PH 
patients, urine oxalate excretion fell up to 50% during 
4 weeks on an oral preparation of O. formigenes (36). In 
this pilot study, three out of five patients with preserved 
renal function demonstrated a 22–48% reduction of 
urinary oxalate excretion while taking the first oral 
formulation of O. formigenes. Two other patients in the 
study with chronic kidney disease on dialysis experienced 
a significant reduction in plasma oxalate and amelioration 
of clinical symptoms. While taking a second O. formigenes 
formulation, four out of six patients with normal renal 
function demonstrated a reduction in urinary oxalate 
ranging from 38.5% to 92%. Although O. formigenes 
could be detected in the vast majority of subjects on 
active treatment, fecal recovery dropped at follow up 
(off therapy), indicating only transient gastrointestinal-
tract colonization while subjects were still taking the 
preparation.

Despite these promising preliminary data, in the decade  
since no evidence from a follow up controlled trial has been 
published to further support the use of oral O. formigenes 
therapy in PH. Potential issues with the therapeutic use of 
oral O. formigenes include formulation of pharmacologic 
amounts of this obligate anaerobe, as well as the long 
term viability of this obligate anaerobe in paste or freeze 
dried preparations. Furthermore, no studies using oral O. 
formigenes in groups of patients with enteric or idiopathic 
hyperoxaluria have yet appeared in the literature. Thus, 
the role of pharmacologic use of this intriguing bacteria to 
reduce urinary oxalate excretion, and hence kidney stone 
risk, remains unclear. 

Other oxalate degraders

In vitro studies suggest that O. formigenes is the most 
efficient oxalate-degrading organism found in the human 
intestinal tract. For example, under controlled conditions 
O. formigenes degraded up to 98% of available oxalate (37). 
On the other hand, in the same studies Lactobacillus and 
Bifidobacterium spp. also effectively degraded oxalate, albeit 
somewhat less effectively (11–68%). Furthermore, the key 
oxalate degrading genes Oxc and frc have been sequenced 
from Lactobacillus and Bifidobacterium spp. One potentially 
unique feature of O. formigenes is that this organism can 
utilize oxalate as a carbon and energy source, and thrives 
in the presence of the anion (38). Other oxalate-degrading 
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species such as Lactobacilli can detoxify oxalate and survive 
in its presence, but not necessarily thrive. Thus, the relative 
importance of various bacteria in oxalate-homeostasis in 
humans remains ill-defined. 

Along these lines, recent studies in the white-throated 
wood rat Neotoma albigula are of interest (39). This 
mammal consumes a diet comprised almost entirely of 
the oxalate-rich Opuntia cactus. These animals have 
a complicated segmented gut that harbors a diverse 
microbiome along its length. The foregut microbial 
community in particular shifts in composition in response to 
dietary toxins, and may be important for their degradation. 
When the microbiome was characterized by segment of the 
intestinal tract, isolates spanned three genera: Lactobacillus, 
Clostridium, and Enterococcus. Over half the isolates exhibited 
oxalate-degrading capacity in vitro, and Lactobacillus 
isolates contained the Oxc gene. Oxalobacter spp. were also 
identified throughout the intestinal tract, but were much 
less abundant and were more concentrated in the more 
distal regions (cecum and large intestine). Other oxalate-
degrading genera (especially Lactobacilli spp.) were more 
concentrated in the foregut, the point where oxalate first 
enters the gastrointestinal tract. The authors hypothesized 
that each gut region supplied a niche for diverse functional 
taxa and communities of microorganisms that can function 
together to degrade and detoxify a large oxalate load as it is 
made bioavailable by digestive processes. The analogies, or 
lack thereof, in humans remain to be determined.  

Conclusions

Diet and gastrointestinal function play a key role in 
determining the composition of the urine. It also seems 
quite likely that the gastrointestinal microbiome would great 
influence how key components of the diet are metabolized 
and absorbed. Key urinary parameters that the microbiome 
might influence include oxalate and citrate. Indeed, the 
intestinal microbiome contains numerous obligate and 
generalized oxalate degraders. Evidence suggests that the 
fecal content of O. formigenes, the best studied oxalate-
degrader, varies depending on stone risk and urinary oxalate 
excretion. However, to date trials with probiotics designed 
to degrade oxalate, including those containing Oxalobacter, 
Lactobacillus, and/or Bifidobacterium spp., have all been 
disappointing. Thus, although the intestinal microbiome 
likely plays a role to modify urinary stone risk, whether we 
can develop tools to manipulate it and decrease this risk 
remains to be determined. 
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