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Abstract: The article is a continuum of a previous one providing further insights into the structure of neural 

network (NN). Key concepts of NN including activation function, error function, learning rate and generalized 

weights are introduced. NN topology can be visualized with generic plot() function by passing a “nn” class object. 

Generalized weights assist interpretation of NN model with respect to the independent effect of individual input 

variables. A large variance of generalized weights for a covariate indicates non-linearity of its independent effect. If 

generalized weights of a covariate are approximately zero, the covariate is considered to have no effect on outcome. 

Finally, prediction of new observations can be performed using compute() function. Make sure that the feature 

variables passed to the compute() function are in the same order to that in the training NN.
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Introduction 

Neural network (NN) has been introduced in the last 
article. In this work, more insights will be provided to give 
readers a comprehensive understanding of how signals are 
processed in the neural networks. Specifically, key terms 
and concepts such as error function, generalized weights, 
multi-layer perceptron and learning rate are illustrated 
in the working example. I believe that concepts are more 
comprehensible when they are illustrated in working 
example than in pure theoretical framework. 

Working example

If you have installed MASS package, you can load the 
birthwt dataset directly into your working space. Otherwise, 
you need to install MASS package first. 

> data(birthwt)

> str(birthwt)

'data.frame': 189 obs. of  10 variables:

 $ low  : int  0 0 0 0 0 0 0 0 0 0 ...

 $ age  : int  19 33 20 21 18 21 22 17 29 26 ...

 $ lwt  : int  182 155 105 108 107 124 118 103 123 113 ...

 $ race : int  2 3 1 1 1 3 1 3 1 1 ...

 $ smoke: int  0 0 1 1 1 0 0 0 1 1 ...

 $ ptl  : int  0 0 0 0 0 0 0 0 0 0 ...

 $ ht   : int  0 0 0 0 0 0 0 0 0 0 ...

 $ ui   : int  1 0 0 1 1 0 0 0 0 0 ...

 $ ftv  : int  0 3 1 2 0 0 1 1 1 0 ...

 $ bwt  : int  2523 2551 2557 2594 2600 2622 2637 2637 
2663 2665 ...

The dataset contains 189 observations and ten variables. 
The data were collected at Baystate Medical Center, 
Springfield, Mass during 1986. The first variable is the 
indicator of low birth weight (low). Mother’s age (age), 
weight (lwt), race (race), smoking status during pregnancy 
(smoke), number of previous premature labors (ptl), history of 
hypertension (ht), presence of uterine irritability (ui), and the 
number of physician visits during the first trimester (ftv) are 
recorded. Birth weights of babies are measured and recorded 
in gram (bwt). The purpose of the study is to predict body 
weight of newborns with recorded covariates, and body 
weight has been recorded in gram and as indicator variable. 
Thus, the outcome can be either binary or continuous. 

Training the neural network (NN)

With the help of the neuralnet() function contained in 
neuralnet package, the training of NN model is extremely 
easy (1). 

> install.packages(“neuralnet”)

> library(neuralnet)

> nn <- neuralnet(

        low~age+lwt+race+smoke+ptl+ht+ui+ftv,

        data=birthwt, hidden=2, err.fct="ce",

        linear.output=FALSE)

> plot(nn)

The above codes firstly install the neuralnet package 
and then load it to the working space. The neuralnet() 
function is powerful and flexible in training a NN model. 
I leave detailed explanations of its parameters to the next 
paragraph. After model training, the topology of the NN 
can be visualized using the generic function plot() with 
many options for adjusting appearance of the plot. Figure 1 
displays topology of the NN. Signal from each of the eight 
predictors is received by input node. The synaptic weights 
are displayed above each line. The blue circles indicate 
bias, corresponding to the intercept in conventional 
regression model. There is one hidden layer consisting two 
units. The variable low is output neuron. The total error 
is 117 and 34 steps are needed for iterations to converge. 
They are shown at the bottom of the figure. 

The first argument of the neuralnet() function is a 
formula describing the model to be fitted. As you can see 
from the example, the specification of the model is similar 
to that in building generalized linear model (2). The left-
hand side specifies the response variable, and the left-
hand side is predictors connected by “+” symbols. The 
“data” argument specifies the data frame on which the 
NN training is based. The parameter hidden is a vector 
specifying the number of hidden layers and the number of 
units in each layer. For example, a vector c(4,2,5) indicates 
a neural network with three hidden layers, and the numbers 
of neurons for the first, second and third layers are 4, 2 and 
5, respectively. In our example, there is one hidden layer 
consisting two neurons. 

In analogue to the link function in generalized linear 
model, NN requires to define an activation function. A 
differentiable activation function can be defined by “act.fct” 
argument. A string value of “logistic” or “tanh” is acceptable 
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for logistic function or tangent hyperbolicus, respectively. 
The default is “logistic”. Activation function transforms 
aggregated input signals, also known as induced local field, 
into output signal (3). In our example, the output is a binary 
outcome, and it is left to its default.

The above NN is a multilayer perceptron that contains 
one or more hidden layers. If a NN contains no hidden 
layer, it is reduced to the Rosenblatt’s perceptron (4). Other 
features of a multilayer perceptron include (I) the activation 
function is differentiable; and (II) the network exhibits a 
high degree of connectivity. 

The argument “err.fct” defines the error function, which 
can be either “sum of squared error (sse)” or “cross entropy 
(ce)”. The default is “sum of squared error” and it can be 
expressed as:

2
sse
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where l=1,2,3,…,L indexes observations, h=1,2,…,H is 
the output nodes, and o is the predicted output and y 
is the observed output. Error function in this form is 
intuitively understandable. However, the comprehension 
of mathematical expression of cross entropy is a little more 
challenging:
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overall, the error function describes the deviation of 
predicted outcomes from the observed ones. Large 
deviation suggests a poorly fitted model and the synaptic 
weights should be adjusted. The algorithm for NN training 
is backpropagation. At the very beginning, each synaptic 
weight adopts a random value. This random model leads 
to a predicted outcome, which is then compared to the 
observed outcome. The comparison is made using error 
function. Absolute partial derivatives of the error function 
with respect to weight ( /E w∂ ∂ ) are slopes used to guide us 
to find a minimum error (e.g., a slope of zero indicates the 
nadir). 

A new weight ( 1tw + ) is calculated based on present weight 
( tw ) and the partial derivative. 
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where η is the learning rate, defining the magnitude 
of weight change in each iteration (3). In traditional 
backpropagation, the learning rate is fixed, but it can be 
changed during training process in resilient backpropagation 
(5,6). Weight update of resilient backpropagation in each 
iteration is written in the following equation: 

( )
( 1) ( ) ( )

( )

t
t t t

k k k t
k

Ew w sign
w

η+  ∂
= −  ∂ 

 [4]

where the learning rate can be changed during training 
process according to the sign of the partial derivative. The 
learning rate kη  is increased when the partial derivative 
keeps its sign. In contrast, if partial derivative of the error 
function changes its sign, kη  should be decreased. That is 
because the changing sign suggests the optimal weight is 
jumped over. Figure 2 is a univariate error function used 
for illustration. The derivative of error function is negative 
at step t, then the next weight 1tw +  should be greater than 

tw  in order to find a weight with a slope equal or close to 
zero. In reality, because the learning rate is a value greater 

Figure 1 Visualization of neural network. Signal from each of the 
eight predictors is received by input node. The synaptic weights 
are displayed above each line. The blue circles indicate bias, 
corresponding the intercept in conventional regression model. 
There is one hidden layer consisting two units. The variable low is 
output neuron.
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than 0, the nadir cannot be exactly arrived at but can be 
approached. Therefore, a threshold should be defined for 
convergence. By default, the neuralnet() function uses 0.01 
as the threshold for partial derivative of error function to 
stop iteration.

The traditional backpropagation can be performed by 
assigning “backprop” to the argument “algorithm”. Resilient 
backpropagation with and without weight backtracking can 
be specified by “rprop+” and “rprop−”, respectively. Here, 
weight backtracking is to undo the last iteration and add a 
smaller value to the weight in the next step. The aim of the 
technique is to accelerate convergence (1). 

Generalized weights

While NN have been proven to have good predictive 
power as compare to traditional models, its interpretability 
remains difficult. Interpretability of NN model requires 
understanding of the independent effect of each individual 
predictor on the prediction of the model. In 2001, Intrator 
and coworkers developed the concept of generalized 
weights for the interpretation of NN (7). The generalized 
weights are mathematically written as: 
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where i is the index for each covariate, o(x) is the predicted 
outcome probability by covariate vector. Log-odds is the 
link function for logistic regression model. The partial 
derivative of the log-odds function with respect to covariate 
of interest is the coefficient for that covariate. However, if 
there are non-linear terms for the covariate, generalized 
weights for that covariate vary greatly over the entire 
covariate pattern. For linear terms as that in conventional 
logistic regression model, the generalized weights of 
a covariate are concentrated at one value. Generalized 
weights for all observations can be visited in “generalized.
weights” element in the nn class object returned by 
neuralnet() function. Graphical visualization of generalized 
weights is another way to examine relative contribution of 
each covariate. The next NN model reduces the number of 
covariates and increases the number of hidden units. 

> nn.limited <- neuralnet(

          low~age+lwt+race+smoke,

          data=birthwt, hidden=4, err.fct="ce",

          linear.output=FALSE)

> plot(nn.limited)

As you can see from Figure 3, there are four input 
nodes and four hidden units in the new NN model. With 

Figure 2 Univariate error function. The derivative of error 
function is negative at step t, then the next weight 1tw +  should be 
greater than tw  in order to find a weight with a slope equal or 
close to zero.

Figure 3 Newly fitted neural network with four input variables. 
The number of hidden neurons is increased to four. The error of 
the neural network is reduced to 104, but it requires 18,246 steps 
for convergence.

Find a minimum slope 
with iterations

Tangent line with zero slope 

Wt W

E

Wt+1 Wn
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greater degree of freedom, the model reduces the error to 
103. However, it requires 18,246 steps for convergence. 
Complexity of a model is measured by the degree of 
freedom in conventional models, and increasing complexity 
carries the risk of model over-fitting (8).  

> par(mfrow=c(2,2))

> gwplot(nn.limited,selected.covariate="age")

> gwplot(nn.limited,selected.covariate="lwt")

> gwplot(nn.limited,selected.covariate="race")

> gwplot(nn.limited,selected.covariate="smoke")

The par() function is used to set graphical parameters. 
After setting mfrow=c(2,2), subsequent figures will be drawn 
in a 2-by-2 array on the device by rows (mfrow). The gwplot() 
graphical function is contained in the neuralnet package and it 

plots general weights against individual covariates (Figure 4). 
The variances of generalized weights for covariates race and 
smoke appear large, indicating non-linearity of their effects. 
If generalized weights of a covariate gather around zero, the 
covariate has no effect on outcome status.

Prediction with neural network (NN) model

While generalized weights help interpretation of NN 
model allowing examination of independent effect of 
covariate, another purpose of NN is to assist prediction of 
future observations. The model is trained with both input 
and output signals, which is known as supervised learning in 
machine learning terminology. For predictions, only input 
signals are known and they are used to predict outcomes. 
In our example, suppose we have four months with known 
feature variables. The probability of having a baby with low 

Figure 4 General weights for each covariate. The variances of generalized weights for covariates race and smoke appear large, indicating non-
linearity of their effects.

A B

C D
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birth weight can be calculated with compute() function.

> new.mother<-matrix(c(23,105,3,1,26,111,2,0,31,125,2,
1,35,136,1,0),byrow=TRUE,ncol=4)

> new.mother

[,1] [,2] [,3] [,4]

[1,] 23 105 3 1

[2,] 26 111 2 0

[3,] 31 125 2 1

[4,] 35 136 1 0

> pred<-compute(nn.limited,new.mother)

> pred$net.result

              [,1]

[1,] 0.41502398595

[2,] 0.41502398353

[3,] 0.41502398595

[4,] 0.05640053409

In the above syntax, features of new mothers are stored 
in a matrix. Note that the order of feature variables should 
be the same as that in the training data frame. The first 
argument of the compute() function is the “nn” class object 
returned by neuralnet(). Next the feature matrix is passed to 
the function. A list of neurons’ output of each layer and the 
net results of the neural network are returned by compute() 
function. Typically, investigators are interested in the final 
result of the network. As shown in our example, the result 
shows the probability of having a low birth weight baby for 
each mother. The first three mothers have 41% probability, 
and the last one has 5% probability of having a low birth 
weight baby.

Summary 

The article provides further insights into the structure 
of NN, covering concepts of activation function, error 
function, learning rate and generalized weights. NN 
topology can be visualized with generic plot() function 
by passing a “nn” class object. Generalized weights assist 
interpretation of NN model with respect to the independent 
effect of individual input variables. A large variance of 
generalized weights for a covariate indicates non-linearity 
of its independent effect. If generalized weights of a 
covariate are approximately zero, the covariate is considered 
to have no effect on outcome. Finally, prediction of new 
observations can be performed using compute() function. 

Make sure that the feature variables passed to the compute() 
function are in the same order as that in the training neural 
network.
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