
Page 1 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

Big-data Clinical Trial Column

Neural networks: further insights into error function, generalized
weights and others

Zhongheng Zhang

Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua 321000, China

Correspondence to: Zhongheng Zhang, MMed. 351#, Mingyue Road, Jinhua 321000, China. Email: zh_zhang1984@hotmail.com.

Author’s introduction: Zhongheng Zhang, MMed. Department of Critical Care Medicine, Jinhua Municipal Central
Hospital, Jinhua Hospital of Zhejiang University. Dr. Zhongheng Zhang is a fellow physician of the Jinhua Municipal
Central Hospital. He graduated from School of Medicine, Zhejiang University in 2009, receiving Master Degree. He has
published more than 35 academic papers (science citation indexed) that have been cited for over 200 times. He has been
appointed as reviewer for 10 journals, including Journal of Cardiovascular Medicine, Hemodialysis International, Journal of
Translational Medicine, Critical Care, International Journal of Clinical Practice, Journal of Critical Care. His major research
interests include hemodynamic monitoring in sepsis and septic shock, delirium, and outcome study for critically ill patients.
He is experienced in data management and statistical analysis by using R and STATA, big data exploration, systematic
review and meta-analysis.

Zhongheng Zhang, MMed.

Abstract: The article is a continuum of a previous one providing further insights into the structure of neural

network (NN). Key concepts of NN including activation function, error function, learning rate and generalized

weights are introduced. NN topology can be visualized with generic plot() function by passing a “nn” class object.

Generalized weights assist interpretation of NN model with respect to the independent effect of individual input

variables. A large variance of generalized weights for a covariate indicates non-linearity of its independent effect. If

generalized weights of a covariate are approximately zero, the covariate is considered to have no effect on outcome.

Finally, prediction of new observations can be performed using compute() function. Make sure that the feature

variables passed to the compute() function are in the same order to that in the training NN.

Keywords: Machine learning; R; neural networks (NNs); error function; generalized weights; activation function

Submitted Mar 20, 2016. Accepted for publication Apr 21, 2016.

doi: 10.21037/atm.2016.05.37

View this article at: http://dx.doi.org/10.21037/atm.2016.05.37

Zhang. Further insights into neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

Page 2 of 6

Introduction

Neural network (NN) has been introduced in the last
article. In this work, more insights will be provided to give
readers a comprehensive understanding of how signals are
processed in the neural networks. Specifically, key terms
and concepts such as error function, generalized weights,
multi-layer perceptron and learning rate are illustrated
in the working example. I believe that concepts are more
comprehensible when they are illustrated in working
example than in pure theoretical framework.

Working example

If you have installed MASS package, you can load the
birthwt dataset directly into your working space. Otherwise,
you need to install MASS package first.

> data(birthwt)

> str(birthwt)

'data.frame': 189 obs. of 10 variables:

 $ low : int 0 0 0 0 0 0 0 0 0 0 ...

 $ age : int 19 33 20 21 18 21 22 17 29 26 ...

 $ lwt : int 182 155 105 108 107 124 118 103 123 113 ...

 $ race : int 2 3 1 1 1 3 1 3 1 1 ...

 $ smoke: int 0 0 1 1 1 0 0 0 1 1 ...

 $ ptl : int 0 0 0 0 0 0 0 0 0 0 ...

 $ ht : int 0 0 0 0 0 0 0 0 0 0 ...

 $ ui : int 1 0 0 1 1 0 0 0 0 0 ...

 $ ftv : int 0 3 1 2 0 0 1 1 1 0 ...

 $ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637
2663 2665 ...

The dataset contains 189 observations and ten variables.
The data were collected at Baystate Medical Center,
Springfield, Mass during 1986. The first variable is the
indicator of low birth weight (low). Mother’s age (age),
weight (lwt), race (race), smoking status during pregnancy
(smoke), number of previous premature labors (ptl), history of
hypertension (ht), presence of uterine irritability (ui), and the
number of physician visits during the first trimester (ftv) are
recorded. Birth weights of babies are measured and recorded
in gram (bwt). The purpose of the study is to predict body
weight of newborns with recorded covariates, and body
weight has been recorded in gram and as indicator variable.
Thus, the outcome can be either binary or continuous.

Training the neural network (NN)

With the help of the neuralnet() function contained in
neuralnet package, the training of NN model is extremely
easy (1).

> install.packages(“neuralnet”)

> library(neuralnet)

> nn <- neuralnet(

 low~age+lwt+race+smoke+ptl+ht+ui+ftv,

 data=birthwt, hidden=2, err.fct="ce",

 linear.output=FALSE)

> plot(nn)

The above codes firstly install the neuralnet package
and then load it to the working space. The neuralnet()
function is powerful and flexible in training a NN model.
I leave detailed explanations of its parameters to the next
paragraph. After model training, the topology of the NN
can be visualized using the generic function plot() with
many options for adjusting appearance of the plot. Figure 1
displays topology of the NN. Signal from each of the eight
predictors is received by input node. The synaptic weights
are displayed above each line. The blue circles indicate
bias, corresponding to the intercept in conventional
regression model. There is one hidden layer consisting two
units. The variable low is output neuron. The total error
is 117 and 34 steps are needed for iterations to converge.
They are shown at the bottom of the figure.

The first argument of the neuralnet() function is a
formula describing the model to be fitted. As you can see
from the example, the specification of the model is similar
to that in building generalized linear model (2). The left-
hand side specifies the response variable, and the left-
hand side is predictors connected by “+” symbols. The
“data” argument specifies the data frame on which the
NN training is based. The parameter hidden is a vector
specifying the number of hidden layers and the number of
units in each layer. For example, a vector c(4,2,5) indicates
a neural network with three hidden layers, and the numbers
of neurons for the first, second and third layers are 4, 2 and
5, respectively. In our example, there is one hidden layer
consisting two neurons.

In analogue to the link function in generalized linear
model, NN requires to define an activation function. A
differentiable activation function can be defined by “act.fct”
argument. A string value of “logistic” or “tanh” is acceptable

Annals of Translational Medicine, Vol 4, No 16 August 2016 Page 3 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

for logistic function or tangent hyperbolicus, respectively.
The default is “logistic”. Activation function transforms
aggregated input signals, also known as induced local field,
into output signal (3). In our example, the output is a binary
outcome, and it is left to its default.

The above NN is a multilayer perceptron that contains
one or more hidden layers. If a NN contains no hidden
layer, it is reduced to the Rosenblatt’s perceptron (4). Other
features of a multilayer perceptron include (I) the activation
function is differentiable; and (II) the network exhibits a
high degree of connectivity.

The argument “err.fct” defines the error function, which
can be either “sum of squared error (sse)” or “cross entropy
(ce)”. The default is “sum of squared error” and it can be
expressed as:

2
sse

1 1

1E = ()
2

L H

lh
l h

o ylh
= =

−∑∑ [1]

where l=1,2,3,…,L indexes observations, h=1,2,…,H is
the output nodes, and o is the predicted output and y
is the observed output. Error function in this form is
intuitively understandable. However, the comprehension
of mathematical expression of cross entropy is a little more
challenging:

ce
1 1

1E = [log() (1) log(1)]
2

L H

lh lh lh lh
l h

y o y o
= =

+ − −∑∑ [2]

overall, the error function describes the deviation of
predicted outcomes from the observed ones. Large
deviation suggests a poorly fitted model and the synaptic
weights should be adjusted. The algorithm for NN training
is backpropagation. At the very beginning, each synaptic
weight adopts a random value. This random model leads
to a predicted outcome, which is then compared to the
observed outcome. The comparison is made using error
function. Absolute partial derivatives of the error function
with respect to weight (/E w∂ ∂) are slopes used to guide us
to find a minimum error (e.g., a slope of zero indicates the
nadir).

A new weight (1tw +) is calculated based on present weight
(tw) and the partial derivative.

()
(1) (1)

()

t
t

k k t
k

Ew w
w

η+ ∂
= −

∂ [3]

where η is the learning rate, defining the magnitude
of weight change in each iteration (3). In traditional
backpropagation, the learning rate is fixed, but it can be
changed during training process in resilient backpropagation
(5,6). Weight update of resilient backpropagation in each
iteration is written in the following equation:

()
(1) () ()

()

t
t t t

k k k t
k

Ew w sign
w

η+ ∂
= − ∂

 [4]

where the learning rate can be changed during training
process according to the sign of the partial derivative. The
learning rate kη is increased when the partial derivative
keeps its sign. In contrast, if partial derivative of the error
function changes its sign, kη should be decreased. That is
because the changing sign suggests the optimal weight is
jumped over. Figure 2 is a univariate error function used
for illustration. The derivative of error function is negative
at step t, then the next weight 1tw + should be greater than

tw in order to find a weight with a slope equal or close to
zero. In reality, because the learning rate is a value greater

Figure 1 Visualization of neural network. Signal from each of the
eight predictors is received by input node. The synaptic weights
are displayed above each line. The blue circles indicate bias,
corresponding the intercept in conventional regression model.
There is one hidden layer consisting two units. The variable low is
output neuron.

Zhang. Further insights into neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

Page 4 of 6

than 0, the nadir cannot be exactly arrived at but can be
approached. Therefore, a threshold should be defined for
convergence. By default, the neuralnet() function uses 0.01
as the threshold for partial derivative of error function to
stop iteration.

The traditional backpropagation can be performed by
assigning “backprop” to the argument “algorithm”. Resilient
backpropagation with and without weight backtracking can
be specified by “rprop+” and “rprop−”, respectively. Here,
weight backtracking is to undo the last iteration and add a
smaller value to the weight in the next step. The aim of the
technique is to accelerate convergence (1).

Generalized weights

While NN have been proven to have good predictive
power as compare to traditional models, its interpretability
remains difficult. Interpretability of NN model requires
understanding of the independent effect of each individual
predictor on the prediction of the model. In 2001, Intrator
and coworkers developed the concept of generalized
weights for the interpretation of NN (7). The generalized
weights are mathematically written as:

()log
1 ()

i
i

o x
o x

w
x

∂ − =

∂

 [5]

where i is the index for each covariate, o(x) is the predicted
outcome probability by covariate vector. Log-odds is the
link function for logistic regression model. The partial
derivative of the log-odds function with respect to covariate
of interest is the coefficient for that covariate. However, if
there are non-linear terms for the covariate, generalized
weights for that covariate vary greatly over the entire
covariate pattern. For linear terms as that in conventional
logistic regression model, the generalized weights of
a covariate are concentrated at one value. Generalized
weights for all observations can be visited in “generalized.
weights” element in the nn class object returned by
neuralnet() function. Graphical visualization of generalized
weights is another way to examine relative contribution of
each covariate. The next NN model reduces the number of
covariates and increases the number of hidden units.

> nn.limited <- neuralnet(

 low~age+lwt+race+smoke,

 data=birthwt, hidden=4, err.fct="ce",

 linear.output=FALSE)

> plot(nn.limited)

As you can see from Figure 3, there are four input
nodes and four hidden units in the new NN model. With

Figure 2 Univariate error function. The derivative of error
function is negative at step t, then the next weight 1tw + should be
greater than tw in order to find a weight with a slope equal or
close to zero.

Figure 3 Newly fitted neural network with four input variables.
The number of hidden neurons is increased to four. The error of
the neural network is reduced to 104, but it requires 18,246 steps
for convergence.

Find a minimum slope
with iterations

Tangent line with zero slope

Wt W

E

Wt+1 Wn

Annals of Translational Medicine, Vol 4, No 16 August 2016 Page 5 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

greater degree of freedom, the model reduces the error to
103. However, it requires 18,246 steps for convergence.
Complexity of a model is measured by the degree of
freedom in conventional models, and increasing complexity
carries the risk of model over-fitting (8).

> par(mfrow=c(2,2))

> gwplot(nn.limited,selected.covariate="age")

> gwplot(nn.limited,selected.covariate="lwt")

> gwplot(nn.limited,selected.covariate="race")

> gwplot(nn.limited,selected.covariate="smoke")

The par() function is used to set graphical parameters.
After setting mfrow=c(2,2), subsequent figures will be drawn
in a 2-by-2 array on the device by rows (mfrow). The gwplot()
graphical function is contained in the neuralnet package and it

plots general weights against individual covariates (Figure 4).
The variances of generalized weights for covariates race and
smoke appear large, indicating non-linearity of their effects.
If generalized weights of a covariate gather around zero, the
covariate has no effect on outcome status.

Prediction with neural network (NN) model

While generalized weights help interpretation of NN
model allowing examination of independent effect of
covariate, another purpose of NN is to assist prediction of
future observations. The model is trained with both input
and output signals, which is known as supervised learning in
machine learning terminology. For predictions, only input
signals are known and they are used to predict outcomes.
In our example, suppose we have four months with known
feature variables. The probability of having a baby with low

Figure 4 General weights for each covariate. The variances of generalized weights for covariates race and smoke appear large, indicating non-
linearity of their effects.

A B

C D

Zhang. Further insights into neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(16):300atm.amegroups.com

Page 6 of 6

birth weight can be calculated with compute() function.

> new.mother<-matrix(c(23,105,3,1,26,111,2,0,31,125,2,
1,35,136,1,0),byrow=TRUE,ncol=4)

> new.mother

[,1] [,2] [,3] [,4]

[1,] 23 105 3 1

[2,] 26 111 2 0

[3,] 31 125 2 1

[4,] 35 136 1 0

> pred<-compute(nn.limited,new.mother)

> pred$net.result

 [,1]

[1,] 0.41502398595

[2,] 0.41502398353

[3,] 0.41502398595

[4,] 0.05640053409

In the above syntax, features of new mothers are stored
in a matrix. Note that the order of feature variables should
be the same as that in the training data frame. The first
argument of the compute() function is the “nn” class object
returned by neuralnet(). Next the feature matrix is passed to
the function. A list of neurons’ output of each layer and the
net results of the neural network are returned by compute()
function. Typically, investigators are interested in the final
result of the network. As shown in our example, the result
shows the probability of having a low birth weight baby for
each mother. The first three mothers have 41% probability,
and the last one has 5% probability of having a low birth
weight baby.

Summary

The article provides further insights into the structure
of NN, covering concepts of activation function, error
function, learning rate and generalized weights. NN
topology can be visualized with generic plot() function
by passing a “nn” class object. Generalized weights assist
interpretation of NN model with respect to the independent
effect of individual input variables. A large variance of
generalized weights for a covariate indicates non-linearity
of its independent effect. If generalized weights of a
covariate are approximately zero, the covariate is considered
to have no effect on outcome. Finally, prediction of new
observations can be performed using compute() function.

Make sure that the feature variables passed to the compute()
function are in the same order as that in the training neural
network.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to
declare.

References

1. Gunther F, Fritsch S. neuralnet: Training of neural
networks. R J 2010;2:30-8. 2010

2. López-gonzález E. Data analysis from the Generalized
Linear Model approach: An application using R |
Análisis de datos con el Modelo Lineal Generalizado.
Una aplicación con R. Revista Espanola de Pedagogia
2011;69:59-80.

3. Haykin SO. Neural Networks and Learning Machines (3rd
Edition). Prentice Hall, 2008.

4. Engel I, Bershad NJ. A transient learning comparison of
Rosenblatt, backpropagation, and LMS algorithms for a
single-layer perceptron for system identification. IEEE
Transactions on Signal Processing 1994;42:1247-51.

5. Riedmiller M. Advanced Supervised Learning in Multi-
layer Perceptrons - From Backpropagation to Adaptive
Learning Algorithms. Computer Standards & Interfaces
1994;16:265-78.

6. Riedmiller M, Braun H. A Direct Adaptive Method
for Faster Backpropagation Learning: The RPROP
Algorithm. In IEEE International Conference on Ural
Networks 1993:586-91.

7. Intrator O, Intrator N. Interpreting neural-network
results: A simulation study. Computational Statistics &
Data Analysis 1999;37:373-93.

8. Zhang Z. Too much covariates in a multivariable model
may cause the problem of overfitting. J Thorac Dis
2014;6:E196-7.

Cite this article as: Zhang Z. Neural networks: further insights
into error function, generalized weights and others. Ann Transl
Med 2016;4(16):300. doi: 10.21037/atm.2016.05.37

